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A dynamic network of cooperating agents is characterized by a spatially distributed
set of dynamic nodes or agents which coordinate to perform the mission objectives. These
coordinated clusters could be composed of an array of satellites constructing a large aperture
radar or a swarm of UAV’s used to suppress enemy air defenses. These mission objectives
are to be achieved in the presence of large uncertainties due largely to a hostile environment.
Within this context, nodes may fail at various levels, measurements may be highly corrupted
and communication channels may be severely limited due to jamming. Communication
links are further challenged due to power constraints and large spatial dispersion, producing
tradeoffs between uncertain information, latency and bandwidth constraints. A decision
and allocation process appears computationally intractable, especially if mechanized using a
centralized architecture.

Over the past three years, important insights have been gained and significant progress
has been made on certain basic issues associated with the development of decentralized
fault detection and identification, and control algorithms for non-classical information pat-
terns. These efforts allowed an appreciation of the complexity of the decentralized problem,
but more importantly they showed the directions that should be taken to make significant
progress in the fundamental issues of distributed estimation, analytical redundancy manage-
ment, and control.

In particular, control issues involving the data transmission through noisy channels are
explored. Furthermore, the problem of detecting faults in local agents and the development
of a decentralized methodology for distributed redundancy management was addressed and
some resolution to these problems obtained. These results have given new direction in the
development of a theory for the control of dynamic networks.
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1 Introduction

One of the most important findings of the Air Force Scientific Advisory Board Summer
Study on UAV’s, from the mission system viewpoint, is that in most operational tasks,
UAV’s frequently should be employed in coordinated clusters rather than as independent
platforms. This notion should also be applied to the use of clusters of satellites configured
to produce, for example, a large aperture radar. These clusters of cooperating agents may
be characterized by a spatially distributed set of dynamic nodes where individual agents
have access to regional information and can share data through a communications network.
Within this context, nodes may fail at various levels, measurements may be highly corrupted
and communication channels are challenged due to power constraints, noisy information,
latency and bandwidth constraints.

The system requirements are induced by the mission objectives, the mission environment,
and the system capability. The system capability depends upon the type and number of as-
sets. These assets are fused together by an information system which integrates all available
information over all assets or nodes in a wireless communication data network. Upon this
data network is imposed a decision system which directs assets such that mission objec-
tives are met. The development of such a system is a great intellectual challenge. Current
approaches impose heuristic management architectures on a hierarchy of system functions
and use nonparametric schemes to produce the decision processes. From these approaches,
little can be understood about the value of information and the decision processes that use
this information. Since transmission of information is necessarily limited, it is important to
communicate only the information that is most valuable for mission success within the data
network. Furthermore, decision rules are to be constructed that best utilize information for
the control and guidance of a particular node, or to enhance the awareness of the other nodes
with minimal transmissions.

Since the control of dynamic networks is essentially in its infancy, creating general proce-
dures that can be efficiently implemented is a long term goal of any well conceived research
program. However, near term goals could be posed which represent important elements of
the more complete problem. To this end, over the last three years, significant progress has
been made on the development of fault detection filters, decentralized fault detection and
identification, and control of systems with nonclassical information patterns. In Section 2,
this work is briefly described with supporting documentation in the appendices. In Section
9.1, the effect of noisy information and the type of information that must be transmitted to
ensure stable and well performing decentralized control is illuminated. In Section 2.2, the
structure of the decentralized detection filter required for analytic redundancy management
of a cluster of agents has indicated the direction for a more complete theory on the decom-
position of the global system into local systems. For example, this decomposition should
achieve the minimal distribution of information in the dynamic network. In a distributed
sensing and actuation architecture, individual agents have access to regional information
which, perhaps, can be shared under a data communication network. The results of Section
2 are important because they show the directions for developing a systematic methodology
for coordinating a distributed set of local systems for global operation.




2 Progress Over the Grant Period

A consequence of cooperative missions is that the agents may require robust, high-performance
data networks for information exchange. This need drives a new research direction in the
theory of the control of dynamic networks. The essence of determining the architecture for
a cooperative system of agents under large uncertainties is to ensure valued information is
distributed in a timely, way. In Section 2.1 control issues involving the data transmission
through noisy channels are explored. It is shown that if the noise is not excessive, then
linear controllers with modified gains are nearly optimal. Furthermore, the form of the data
to be transmitted has an enormous impact on the system stability as well as performance.
In Section 2.2 the problem of detecting faults in the local agents and the development of
a decentralized methodology for distributed redundancy management are described. Two
important new results are obtained. First, we develop a new robust detection filter based
on a disturbance attenuation methodology, which allows the detection and identification of
multiple faults. Second, a decentralized detection filter is developed.

2.1 Decentralized-Control with Noisy Transmission of Information

In [1, Appendix A}, a simple example of a decentralized control problem with noisy infor-
mation transmission was investigated. This example is a reformulation of the Witsenhausen
counterexample which allows the first station to send its information to the second station
through an additive white Gaussian noise channel. We show that Witsenhausen’s original
counterexample can be seen as a limit case in this new formulation. We believe that this
new formulation is closer to many applications in large scale systems, where different pieces
of information could be transmitted among the stations through some noisy channels. We
should note that as soon as some kind of communication uncertainty is introduced for the
transmission, the information pattern is no longer classical and the cost may no longer be
convex in the strategies. Hence, the optimal strategies, which may not even be unique,
are very difficuit to find. Similar approaches that have so far been used for the Witsen-
hausen problem, might be applied to this new formulation as well. For example, asymptotic
approaches using expansions in small € can be used.

In [2, Appendix B], we considered the case where the communication uncertainty is small.
We followed an asymptotic approach where we approximated the cost based on its expansion
in terms of the small transmission noise intensity. We showed how minimizing the approx-
imated cost can be seen as a singular optimization problem. We then used a variational
approach in order to find the necessary conditions for the asymptotically optimal strategies
and showed that some reasonable linear strategies would actually satisfy those conditions.
We also provided some intuitive explanations for the behavior of those linear strategies and
obtained their corresponding cost. All the derivations and results in this paper show some of
the difficulties involved in dealing with decentralized systems as soon as we deviate a little
bit from a classical, or at least a partially nested, information pattern. On the other hand,
although we have modeled the communication uncertainty in the simplest possible way, we
have iried to emphasize the role of communication uncertainties in generating information




patterns that are very difficult to handle. Even though the optimization problem is generally
difficult for-this class of systems, in some applications we might be able to exploit the spe-
cific structure of the system in order to obtain some reasonably good sup-optimal strategies,
which would yield an acceptable performance.

Finally, in [3, Appendix C], a more general two-station decentralized LQG problem was
formulated, where the local controllers had to be designed based on some local information
in order to minimize a single common cnst. This problem generally has a non-classical
information pattern and the optimal controls are usually unknown. One of the first possible
sub-optimal approaches is to decompese the problem into separate centralized problems. In
this paper, we investigated such an approach for different communication scenarios between
the stations, namely, when the stations communicate their controls, their measurements
or both, or their estimation residuals. We showed that even though our approach is quite
reasonable for the case where the stations communicate all their measurements, it may fail to
stabilize the closed-loop system as soon as the compensator is unstable. Then, we showed how
this difficulty can be removed if the stations either communicate both their measurements
and their controls or communicate their estimation residuals. All these results show some
of the fundamental differences between the centralized and the decentralized structures.
Moreover, we have tried to elaborate on the role of communication among the stations and
corresponding uncertainties. While many new applications for spatially distributed dynamic
systems are emerging, there are still major difficulties that need to be addressed.

2.2 Detection Filters for Robust Analytical Redundancy

Any system under automatic control demands a high degree of system reliability. Therefore,
the system relies on the health of the sensors, plant, and actuators. If a system fault
occurs, the controller will not work properly. If a sensor fails, the command generated by
the controller will be based on the wrong information. If an actuator fails, the controller’s
command will not be executed properly in the system. Therefore, a health monitoring system
capable of detecting a fault as it occurs and identifying the faulty component is required. The
most common approach is hardware redundancy, which is the direct comparison of identical
components. This approach requires very little computation. However, hardware redundancy
is expensive and limited by space and weight. An alternative is analytical redundancy, which
uses a modeled dynamic relationship between system inputs and measured system outputs
to form a residual process used for detecting and identifying faults. Nominally, the residual is
nonzero only when a fault has occurred and is zero at other times. Therefore, no redundant
components are needed. However, additional computation is required.

. A popular approach to analytical redundancy is the detection filter which was first intro-
duced by [4] and refined by [5]. It is also known as the Beard-Jones fault detection filter. A
geometric interpretation of this filter is given in [6] and a spectral theory and implementation
appeared in [7]. Design algorithms have been developed [8,9] which improved detection filter
robustness. The idea of a detection filter is to put the reachable subspace of each fault into
invariant subspaces which do not overlap with each other. Then, when a nonzero residual




is detected, a fault can be announced and identified by projecting the residual onto each of
the invariant subspaces. Therefore, multiple faults can be monitored in one filter.

Another related approach, the unknown input observer [10], simplifies the detection filter
problem by dividing the faults into a target fault and a group of nuisance faults where the
nuisance faults are placed into one unobservable subspace. Although only one fault can be
detected in each unknown input observer, the additional flexibility in robust fault detection
filter design for general time-varying systems is obtained by using this approximate fault
detection filter.

Four fault detection and identification algorithms were developed, progressively improv-
ing the relationship between robustness and detection and identification. They are the
game theoretic fault detection filter (an approximate unknown input observer), the optimal
stochastic fault detection filter (an approximate unknown input observer), the residual-
sensitive fault detection filter (an approximate unknown input observer), and the optimal
stochastic multiple-fault detection filter (an approximate Beard-Jones fault detection filter).

2.2.1 A Game-Theoretic Fault Detection Filter

In [11] we posed and solved a disturbance attenuation problem which closely approximates
the actions of a fault detection filter. The end product is a game theoretic filter which
acts as an approximate unknown input observer. We also showed that this approximation
can be made more and more exact until, in the limit, the game theoretic filter becomes an
unknown input observer exactly. A related result is that a reduced-order observer can also be
obtained from the limiting case. The disturbance attenuation-based approach that we have
introduced here leads to filters which are more flexible, more robust, and more applicable
than existing fault detection structures. This approach allows time-varying systems to be
monitored for the first time. Finally, in the course of our limiting case analysis, we showed
that singular optimization theory can be used to analyze the asymptotic properties of game
theoretic estimators. It is possible that the application of singular optimization theory to
other disturbance attenuation problems can lead to similar imsights.

2.2.2 Optimal Stochastic Fault Detection Filter

Properties of the optimal stochastic fault detection filter for fault detection and identification
are determined in [12, Appendix C]. The objective of the filter is to monitor a certain fault
called the target fault and block other faults which are called nuisance faults. This filter is
derived by keeping the ratio of the transmission from nuisance faults to the transmission from
the target fault small. Rather than an arbitrary function, the fault amplitudes are modeled
as white noise input processes. It is shown that this filter approximates the properties of the
classical fault detection filter such that in the limit, where the ratio of the transmissions is
zero, the optimal stochastic fault detection filter is equivalent to the unknown input observer.
However, the nuisance fault directions and their associated invariant zero directions must be
included in the invariant subspace generated by this fault detection filter. Fault detection
filter designs can be obtained for both linear time-invariant and time-varying systems.




2.2.3 A Generalized Least-Squares Fault Detection Filter

The generalized least-squares fault detection filter in [13, Appendix D] is derived from solving
a min-max problem which makes the residual sensitive to the target fault, but not to the
nuisance fault. This is an alternate derivation of the optimal stochastic fault detection
filter [12] of Section 2.2.2. In the limit, as the nuisance fault weighting goes to zero, this
filter is equivalent to an unknown input observer which puts the nuisance fault into an
unobservability subspace. Furthermore, there exists a reduced-order filter in the limit. Since
the target fault is explicit in this derivation, the reduced-order filter is found witb respect
to the target fault direction and weighting. This aspect is different from that of the game
theoretic detection filter [11] where this dependence does not exist. This filter also extends
the unknown input observer to a time-varying system.

2.2.4 Optimal Stochastic Multiple-Fault Detection Filter

The optimal stochastic multi-fault detection filter (14, Appendix E] is a generalization of the
optimal stochastic single-fault filter. The residual space of the filter is divided into several
subspaces and each subspace is sensitive to only its target fault, but not the nuisance faults,
in the sense that the ratio of the transmission from the nuisance faults to the transmission
from target fault is small. In the limit as the ratio goes to zero and in the absence of
sensor noise and a complementary subspace, this filter is equivalent to a Beard-Jones fault
detection filter which puts each fault into an unobservable subspace. This filter has the
advantages of the unknown input observer in that it can be designed for robustness and
time-varying systems, and the advantages of the Beard-Jones fault detection filter by being
capable of detecting multiple faults in one filter. Although there is additional computation
to determine the filter gain and projectors, this can be done off-line so that implementation
is as straightforward as the Beard-Jones fault detection filter.

2.2.5 A Decentralized Fault Detection Filter

In [15, Appendix F] we introduce the decentralized fault detection filter which is the structure
that results from merging decentralized estimation theory with the game theoretic fault
detection filter. A decentralized approach may be the ideal way to monitor the health of large-
scale systems since it breaks the problem down into smaller pieces and it is easily scalable.
An essential feature is that the local measurements, which may include the information of
the relative state space between agents, and the fault direction, which may also be associated
with the inter agent measurements, produce local state spaces from the global state by a
minimal realization. This local state space contains information associated with multiple

agents.
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Abstract

We consider an example for a decentralized stochastic opti-
mal control problem, where the non-classical nature of the
information pattern is induced by the transmission noise in
the system. This example is a reformulation of the Witsen-
hausen counterexample, where the first station is allowed to
send its information to the second station through an addi-
tive white Gaussian noise channel. ‘We establish the non-
convexity of the problem in this new formulation and show
that the problem considered here converges asymptotically
to the classical problem or the Witsenhausen problem, as the
transmission noise intensity converges to zero or diverges to
infinity, respectively.

1 Introduction

Dealing with large scale systems has become a great chal-
lenge for systems analysts and engineers more than ever.
There are many such systems, which are compose< of a
large number of complex interconnected subsystems and
hence do not satisfy the centrality assumption that is preva-
lent among classical engineering approaches. One of the
main characteristics of these systems is that distributed de-
cisions must be made based on decentralized information.
Different stations may communicate with each other, possi-
bly by signaling through noisy channels. The control prob-
lem is to develop coordinated strategies for the stations in
order to achieve a common objective.

The way that information is distributed in a decentralized
system highly affects the performance of the controlled
system. Changes in the information pattern will produce
changes in the optimal achievable cost. Even though there
are always some constraints on how the information can be
distributed in a physical system (where to put the sensors
and the actuators, what to transmit, etc.), in general, there

* This research was supported in part by the National Science Foun-
dation under Grant ECS-9502945, Air Force Office of Scientific Research
under Grant F49620-97-1-0272 and Office of Naval Research under Award
N00014-97-1-0939
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are many possible information patterns for a given system.

When the stations do not have access to the same informa-
tion and/or some stations do not have perfect recall, i.e.,
they lose information, we have a non-classical information
pattern. Optimal strategies for decentralized systems with
general non-classical patterns are still unknown. One main
difficulty is that the information available to one station may
not be sufficient to determine the previous actions by other
stations, which have affected that information. This will de-
stroy the convexity of the cost function with respect to the
strategies, even though it may look convex in the controls.

In 1968, Witsenhausen provided a simple example in [8],
where there are only two stations, the dynamics are linear,
the underlying uncertainties are additive and Gaussian and
the cost is quadratic. The information pattern, however,
is non-classical. He established the existence of the opti-
mal design and by proposing a nonlinear set of strategies,
showed that no affine strategy could be optimal. This seem-
ingly simple example, which is also called Witsenhausen’s
counterexample, turned out to be extremely hard. It is still
outstanding after 30 years. This example in fact motivated
much research on the links between decentralized stochas-
tic control problems and team theory and the effects of dif-
ferent information patterns on decentralized systems. Al-
though it is a very simple example, it demonstrates the main
difficulties induced by non-classical information patterns.

In the next section, we reformulate Wisenhausen’s problem
by assuming that the first station sends its information to the
second station through a noisy channel. In Section 3, we
obtain an alternative form for the performance index in this
new formulation, which shows the possible non-convexity
of the cost with respect to the strategies. In Section 4,
we consider two limit cases, namely when the transmission
noise intensity is small and when it becomes very large. We
will see how this new formulation covers a wide range of
problems from classical LQG problem to the Witsenhausen
counterexample. Finally, Section 5 contains some conclud-

ing remarks.




2 Problem Statement

Consider a two-stage stochastic problem with the following
state equations:

3y = ZTo+ U 2.1
Iy = .Z1 — Uy, (22)

where z is the random initial state, which is assumed to be
Gaussian with zero mean and variance 2. The information
available to the two stations is determined by the following
output equations:

zZy = Zo 2.3)
2 = [ To + €Vt ] é [ 221 }, 2.4)

To + Uy + V2 222

where v, is the measurement noise for the second station,
which is again assumed to be a zero mean Gaussian ran-
dom variable with unit variance. As we can see, the in-
formation available to the first station is being transmitted
to the second station through an additive white Gaussian
noise channel with ev; ~ N (0, €?) being the transmission
noise. Also zg, vz and v, are all assumed to be independent
of each other. Note that the communication uncertainty is
simply modeled as an additive Gaussian noise. This model
may not be very realistic when digital communication is
used. However, since there are already some major diffi-
culties in dealing with non-classical information patterns,
using more complicated models for the communication un-
certainties may not be very reasonable at this point.

The objective is now to design the controls:

U = "71(21) . (25)
uz = 72(22), ' (2.6)

in order to minimize the following cost function:
J = E [K*u} + 3], @.7)

where k2 > 0 is a given constant. We see that the first
controller has perfect information but its action is costly. In
contrast, the second controller has inexpensive control but
noisy information. Since the second station does not know
exactly what the first station knew, due to the communica-
tion uncertainty, we don’t have perfect recall and hence we
still have a non-classical pattern. If there was no transmis-
sion noise, we would have a classical information pattern
for which a set of strategies, which are linear in the infor-
mation, is known to be the unique optimal solution.

3 An Alternative Form for the Performance Index

In this section, the performance index is rewritten in terms
of the Fisher information matrix, which indicates that the
cost may not be convex in the strategies.

Similar to the Witsenhausen problem, we define:

z1+m(z1) =20 +uw 3E.n
72 (22) = ua. (3.2)

f(z1)

9(z) &

Then the cost can be expressed as:

J = FE [kzuf + J:g]
= B[¥(a-f2) +(f (=) -9 (=)’]
a

J(f,9)- ' (3.3)

It is clear that for a fixed strategy f, the optimal strategy g
is the conditional expectation, i.e.,:

g* (22) = axgminJ (£,9) = Blf () |=2]. B

Substituting back in the cost, we get:

A

I 2 I
= RE (s - f (@) + E [(f (21) - 5" (22))?]
= K E[(a1~f (20))*[+B[(f (21))*]-E[(6" (=))*] 35)

where we have used the orthogonality property of the con-
ditional expectation:

E((f(n) - ¢" (22)) g* ()] =0.  (3.6)

It is important to note the minus sign in the third term in
(3.5) . As we shall see, this minus sign could indeed destroy
the convexity of the cost with respect to the strategies. -

On the other hand:

/ f(z2)p (a1 72) doa

[ f(z1)p(21,22) dz
[p(z1,22)dzy '
where p (21, z2) is the joint probability density of z; and

z3. The following lemma can be used in order to express
g* (22) in terms of z; and its probability density.

9" (z2)

3.7

Lemma 3.1: f (1) p(z1, z2) can be expressed in terms of
222 and the joint probability density of z; and z; in the fol-
lowing form:

f(21) p(21,22) = 2220 (21, 22) + 5—6—'1” (21,22). (3.8)
, 222

Proof:

a
222p (21, 22) + 3P (21, 22)
222

a
= zp9p (21,22)4'5—? (22121) p(21)
222




= 2229 (21, z2)

+ 3Bl ) ([ i ]—[ ) D p(z1)

= 205p (21, 22)

(1 (221 — 21)2 (222 — f(zl))2
g gt

= f(z1)p(21,22), (3.9)

where we have used the specific form of the information
available to the second station and the fact that ev; ~
N (0,€%) and vz ~ N(0,1) are independent.

Substituting for f(21) p(21,22) from the above. lemma
back in (3.7) and integrating with respect to z;, we will ob-
tain g* (22) as follows:

g" (z2) = z22 + 9 Inp(z2). (3.10)

8222

On the other hand, we have:
ElZ]=E[f@)]+1 @1

and:

7]
E [Zzzg‘;z—z' Inp (22)] =

+o 9
/ / 290 — In (p (221, 222)) P (221, 222) dz21d222.(3.12)
oo Oz

If we integrate by parts with respect to zp2, we will get:

+oo 8
/ 222 — In (p (221, 222)) P (221, 222) d222
—oo 0z22

= 290D (221, 222) [T — /

—00

+-c0
p (221, 222) dzgz

= —p (221) , (313)

where 2,2 is assumed to have a finite mean value and there-
fore the first term becomes zero. Hence:.

E [zzz—a— Inp (zz)] = ~1.

57 (3.14)

We can now obtain E [(g‘ (22))2] and substitute it back

in (3.5) to express the performance index in the following
form:

J(f) = RE [(s - £ ()] + 1= I (Z2)py (315)

where I; (Z3),, is indeed the (2,2) element of the Fisher
information matrix' for z;, which is defined as follows:

I;(Z:) 2 E[VE Inp(z) Vi, lnp(z)].  (3.16)

IFisher information is originally obtained in the Cramer-Rao bound,
which is a measure for the minimum error in estimating a parameter based
on the value of a random variable. However, by introducing a location
parameter, an altemnative form of the Fisher information may be defined
for a random variable with a given distribution. This alternative form is in
fact related to the entropy measure (see [4), p.494).

The subscript f indicates the fact that it actually depends on
the form of the strategy f, which is present in the defini-
tion of z and would affect its probability density function.
As we see, the cost is now expressed only in terms of one
strategy f. Also, this somehow shows us that in order to
minimize the cost, we need to get the lowest possible cost
associated with the first station, while we transfer as much
information as possible to the second station through the
dynamics of the system. The possible non-convexity of the
cost with respect to f can also be seen from the above ex-
pression. It can be shown that the Fisher information term is
a convex functional [3]. Therefore, 1 — I (Z2),, is concave
and the sum of a convex and a concave functivnal may not
be convex.

4 Limit Cases

4.1 Noiseless Transmission

We first consider the limit case in which the transmission
is noiseless, i.e., € = 0 and hence zz; = 2;. In this case,
the second station knows exactly what the first station knew.
Therefore, we have perfect recall and the information pat-
tern is classical. We can write:

p (22)=p (221, 222)=P (222 |221 ) p (221)=p (222 | 21 ) P (21)

R . (_____.__(222 "2{(21)) ) plzn). @1

V2r
Then, from (3.10), we will have:
g* (z2) = f(z1) = f (221), “

which could easily be obtained from the original definition
for g*, i.e..:

9* (z2)=E[f(2)l 2] = f (=), (4.3)

because z; is exactly known given z2. Substituting this back
in (3.5) and minimizing with respect to the strategy f, we
will have:

9" (z2) = f(21) = 21, “4.4)

and hence:
n(zn) = 0 4.5)
12(22) = 21, (4.6)

which is the unique linear set of optimal strategies. This
indeed turns out to be a very simple example of the well-
known LQG problems.

4.2 Infinite Transmission Noise Intensity

Another limit case is when the transmission noise intensity
increases to infinity. In this case, 22; and 232 indeed become
independent and we will have:

p(22) = p(221,222) = p(221) P (222) - 4.7




The Fisher information term can now be written as:

It (Z2)y =
+00/ 5 2
// (—_’lnp(ZZIyZZZ)>p(321y222)d321dz22
—oo \ 0222 v

= /+°°.(—6—111P(222))2P(222) dzaz

—oo \ 0222
= I (Zzz) , (4.8)

which is actually the Fisher information content of 232 only.
Hence:

I =RE[m - f @) +1-1; (Z). @49

This is the same result that was presented for the Witsen-
hausen counterexample in [8]. Intuitively, when we have
infinite transmission noise, we might as well deny the ac-
cess to z; for the second station, which is exactly the case in
Witsenhausen'’s counterexample. The optimal strategies for
this case are still unknown. Witsenhausen showed that the
optimal solution exists, even if 2o has a general distribution
with a finite second moment [8]. He then showed that if one
of the strategies is restricted to be affine, the other optimal
strategy would also be affine. But then he provided a set of
nonlinear strategies that could achieve a lower cost for some
values of k2 and gq. Different approaches have been taken
in order to find the optimal strategies. The asymptotic ap-
proach was used in [2] for the case where g is small. In [1],
a neural network, trained by stochastic approximation tech-
niques, was used in order to approximate the optimal strate-
gies. It was demonstrated that the optimal f* (21) may not
be strictly piecewise, as was suggested by Witsenhausen,
but slightly sloped. Some researchers have tried to attack
the problem numerically and use some sample and search
techniques to find the solution. A discretized version of
the problem was formulated in [5], which was later shown
in [7] to be NP-complete and computationally intractable.
It is recently asserted in [6] that a global optimum would be
achieved by searching directly in the strategy space using
the generalized step functions to approximate f (z1).

5 Concluding Remarks

A simple example of a decentralized control problem with
noisy information transmission was investigated. This ex-
ample is a reformulation of the Witsenhausen counterex-
ample by allowing the first station to send its information
to the second station through an additive white Gaussian
noise channel. In fact, we show that Witsenhausen's origi-
nal counterexample can be seen as a limit case in this new
formulation. We believe that this new formulation is closer
to many applications in large scale systems, where differ-
ent pieces of information could be transmitted among the
stations through some noisy channels. We should note that
as soon as some kind of communication uncertainty is in-
troduced for the transmission, the information pattern is no

longer classical and the cost may no longer be convex in
the strategies. Hence, the optimal strategies, which may not
even be unique, are very difficult to find. Similar approaches
that have so far been used for the Witsenhausen problem,
might be applied to this new formulation as well. For exam-
ple, asymptotic approaches using expansions in small € are
possible.
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Abstract

A reformulation of the Witsenhausen counter-example is
considered, where the first station is allowed to transmit its
information to the second station through a low noise chan-
nel. This is in fact a decentralized stochastic system where
the communication uncertainty induces a non-classical in-
formation pattern. Assuming a small transmission noise
intensity, an asymptotic approach is used in order to find
an approximated cost. Then, the necessary conditions for
asymptotically optimal strategies are obtained using a vari-
ational approach. It is shown that the necessary conditions
are satisfied by linear strategies with slightly different coef-
ficients than the noiseless transmission case.

1 Introduction

Coordinating and controlling dynamic systems in spatial
networks has always been a challenging problem for sys-
tem designers. It is now attracting more attention as various

new applications are emerging in a very wide range, from: |

controlling autonomous vehicles in formation to flow and
congestion control in computer networks. However, there
are still some major difficulties in dealing with such sys-
tems.

The main characteristics of any decentralized system is that
the information is distributed among different stations and
the performance of the system highly depends on the cor-
responding information pattern, i.e., who knows what and
when. The stations may communicate with each other, pos-
sibly by signaling through noisy channels. Even though
there might be some physical constraints on the informa-
tion structure of the system (e.g. locations of the sensors,
.- the actuators, and the transmitters), in general, an optimal
‘information pattern should be obtained. Then, based on
the locally available information, a set of coordinated local
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strategies should be designed in order to achieve a common
objective. In many cases, however, we will end up with non-
convex functional optimization problems, which are usually
very difficult to solve.

One such class of problems is when the decentralized sys-
tem has a non-classical information pattern which is not par-
tially nested. In this case, some stations can not reconstruct
the previous actions of other stations which have affected
their own local information. Unfortunately, this happens in
many decentralized systems.

In 1968, Witsenhausen provided a simple example in [6],
where there are only two stations, the dynamics are linear, -
the underlying uncertainties are additive and Gaussian and
the cost is quadratic. The information pattern, however, is
non-classical. This example, which demonstrates some of
the major difficulties in dealing with non-classical informa-
tion patterns, motivated much research on the links between
decentralized stochastic control problems and team theory
and the effects of different information patterns on decen-
tralized systems.

In this example, one station acts first and affects the infor-
mation available to the next station while there is no way for
the second station to determine the action of the first station.
The existence of the optimal design was established in [6],
where a nonlinear set of strategies was also proposed which
showed that no affine strategy could be optimal. It was later
shown in [3] that when the uncertainty on the information
available to the first station is small, linear strategies would
still be optimal over a large class of nonlinear strategies. In-
tuitively, when the uncertainty on the information of the first
station is small, the second station will also be able to guess
what that information was. Therefore, since the problem is
cooperative in the sense that the stations are aware of each
others’ strategies, the second station can almost reconstruct
the action of the first station and there is no need for any
kind of signaling among the stations through the dynamics
of the system.

4941




g(z2) & m(z)=1u. 2.9)

Then the cost can be expressed as:

J EW&+@
B[ (— £ () + (f (2) = 9 (22))]

J(f.9)- (2.10)

!

>

If we fix the function f, the optimal strategy g will clearly
be obtained as the conditional expectation, i.e.,:

g (z2) = argm}nJ(f,y) =E[f(z1)]22]. (21D
It was shown in [5] that: '

i}
g* (22) = 222+ B7en Inp(22). (2.12)
222

where p (22) = p (221, 222) is the probability density func-
tion for the information available to the second station. It
was further shown that the cost can be written as the follow-
ing and may not be convex in I

Jay

J(f) = J97)
—RE [z - f ()] + E[(f (2) - ¢" ()]

K[z~ § )+ E[(f e -E[(6" (e ] 219
=kE [(z1 —f (z1))2] +1~ Iy (Z2),, @.14)

where It (Z;),, is the (2,2) element of the Fisher informa-
tion matrix for zz, which is defined as:

I (Z) 2 E[VElnp(z) - Vi lnp(z)] . (215)

As we mentioned earlier, for the noiseless transmission
case, the unique optimal strategies, which are linear in the
information, are easily obtained. On the other hand, when
the transmission noise intensity € is small, we would still
expect a similar behavior for the optimal strategies. In the
following sections, we will consider this case. Namely, we
will assume v; has a small intensity. Under this assumption,
we will obtain the first few terms in the expansion of the cost
in terms of . We will then use the Hamiltonian approach in
order to find the necessary conditions for the strategies that
minimize the approximated cost.

3 An Expansion for the Cost

Assume that the first station communicates with the second
station through a low noise channel. In other words, the
transmission noise intensity € is assumed to be small. In
this section, we will find an expansion for the cost in terms
of . For this purpose, we first find an expansion for the
probability density function of the information available to
the second station, i.e., p (z2). Then, we use (2.12) in order
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to find the corresponding expansion for g* (23). By substi-
tuting back in (2.13), we will obtain the expanded cost only
in terms of f.

The probability density function for zz can be written as
follows:

A oo
pe(z) 2 plaa) = / p(aag,za,m)dn G.D)

+00
= / p (222221, 21) p (221]21) p (21) d21 (32
-+-00
=/ p(222121) p(222)21) P (21) d21 3.3)
+00 .
= / p (222]21) Po. (221 — 21) P (21) 21 (3.4)
_[™ (222 = £ (1))’

1 (221 — 21)? 1 ( 22 )
exp |— expl——5]dz,(3.5
2me p( 2¢? 2700 *P 203 #1,(3-3)

where for (3.3) we have used the facts that the o-fields gen-
erated by {721, 21} and {1, v;} are the same and z;, v¢ and
vq are mutually independent. For small €, we now approx-
imate In p, (22) by considering only the first three terms of
its expansion around ¢ = 0. Namely:

7] a?
1n pe (22) 2In po (22) + 2= Inpe (22)| €+ 7 Inpe (22)| €.
de =0 OF€ -0
36
By making the following change of variables:
€y = 23 — 291 = edy = dzy, 3.7

we can write pe (z2) in the following form:

—+o00 _F 2
Pe (22) B 712=7:exp (_(_z_”_é_"(_y))_)

1 _ (221 + ey)2 1 ( yz)
Tonon exp ( 503 Wi exp 2 dy,(3.8)

where:

= A
fe(y) = fley+ z21). (39
1t is now clear that:
1 [ (e f (1))’ _1 ( ggl_)
pO(z2)"‘\/2—7r exp( 2 mao €exp 208 ’
(3.10)
and hence:
(=) A ( 1
Inpo () = 2 20¢ +ho 2rog )
: (.11
For the first order term, we have:
o 1 8
-8-2 lnp¢ (zg) - = p—o-—zT) Ep‘ (Zz) o N (3.12)




This seemingly simple example, which has come to be
called Witsenhausen’s counter-example, turned out to be ex-
tremely hard. It is still outstanding after 30 years. However,
new emerging applications and the necessity of looking
back at some fundamental obstacles in designing decentral-
ized stochastic strategies have recently inspired some new
research on this example. In [1], a neural network, trained
by stochastic approximation techniques, was used in order
to approximate the optimal strategies. Also it was recently
asserted in [4] that a global optimum would be achieved by
searching directly in the strategy space using the general-
ized step functions to approximate the strategies.

In Witsenhausen’s problem, the non-classical nature of the
information pattern is a result of the fact that the information
available to the first station is completely inaccessible for
the second station. However, recent advances in computing
and communication technologies make it possible for the
stations in many decentralized systems to communicate dif-
ferent pieces of information. But the communications can
never be perfect and there is always some uncertainty in-
volved. Unfortunately, such uncertainty will again induce a
non-classical nature on the information pattern of the sys-
tem.

In [5], Witsenhausen’s problem was reformulated in such
a way that the first station could communicate its informa-
tion with the second station through a noisy channel. It was
shown that as long as there is noise in transmission, the
main difficulties will persist. Specifically, the cost might
still be non-convex with respect to the strategies. However,
when the transmission noise intensities are small, we would
expect the optimal strategies to be very close to the corre-
sponding strategies for the noiseless transmission case.

In the next section, we formulate the problem and discuss
some of the results obtained in [S]. In Section 3, we ap-
proximate the cost by expanding it in terms of the small
transmission noise intensity. In Section 4, we use a vari-
ational approach in order to find a necessary condition for
the strategies which minimize the approximated cost. As
we shall see, wé will actually have a singular optimization
problem. We will then show that asymptotically optimal
strategies may still be linear with slightly different coef-
ficients than the corresponding strategies for the noiseless
transmission case. Finally, in the last section, we will have
our concluding remarks.

2 Problem Description

Consider a two-stage stochastic problem with the following
state equations:
z1 = Tg+u 2.1)
T3 = Iz — U3, 2.2)
where zg is the initial state, which is assumed to be a zero

mean Gaussian random variable with variance o3. The in-
formation pattérn of the system is specified by the following
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output equations:
21 = o (2.3)
_ To + Ut Al 2
= [zo+“1+va]— 222]' @4

where v, is the measurement noise for the second station,
which is also assumed to be a zero mean Gaussian random
variable with unit variance. As we can see, the information
available to the first station is being transmitted to the sec-
ond station and the communication uncertainty is modeled
by an additive Gaussian noise v; ~ N (0, €?). Also, Zo, ¥
and v; are all assumed to be independent of each other.

1t is clear that we have simply modeled the received in-
formation signal as the transmitted signal plus a Gaussian
transmission noise. While this model is realistic for analog
communication systems, it may not be well justified when
digital communication is used. In digital communication
systems, the signal is quantized, coded and sent through the
channel. Still, the channel noise may realistically be as-
sumed to be additive and Gaussian, but sophisticated mod-
ulation and coding schemes make it difficult to assume a
simple additive Gaussian uncertainty for the received in-
formation signal. However, if we try to incorporate the
quantization effects along with the error probability distri-
bution for some good coding and modulation schemes in or-
der to model the communication uncertainties, we will end
up with models which could still be approximated, to some
degree, by simple additive Gaussian models. On the other
hand, since there are already major difficulties in dealing
with decentralized non-classical information patterns, using
more complex models for communication uncertainties may
not seem very reasonable at this point. Furthermore, we be-
lieve that the results obtained under such a simplifying as-
sumption would still serve as a guideline for finding the true
nature of decentralized strategies.

The objective is now to design:

u = m(a) (2.5)
uz = 72(2), (2.6)

in order to minimize the following cost function:
J = E[Ku} + 23], Q.7

where k* > 0 is a given constant. We see that the first
controller has perfect information but its action is costly.
In contrast, the second controller has inexpensive control
but noisy information. Since the second station does not
know what the first station knew, due to the transmission
noise, we don’t have perfect recall and hence we still have
a non-classical pattern. If there was no transmission noise,
we would have a classical information pattern for which the
unique optimal strategies are known to be linear in the in-
formation.

For simplicity, lets define:

f(z1) 2 z+m(zn)=20+u 2.8)




On the other hand:
8
_pc (Zz) =
(221 +e0)?
/+ooa fﬂz_{ﬁ)j 1 -~ e "nﬂz_ Le_y;_dy
ae \/2_“' J2_7r ¢\=42_1r
322~1(32102
/wr(,,,_ (222)) v () e~ 5
.2
1 e 3 1 - 2ci +/+°°Le'(' el
\/EUO \/57—1’9 v —“‘/—2;
22
1 z21 -2 1 2
_ %21 o d ::0. 3'13
\/Q;g_a( ag)ye ome zay ( )
Therefore
()| =0 @19
=0

This result is not unexpected, because we would expect the
behavior of p, (22) only to depend on the variance of the
Gaussian transmission noise, i.e., €2, Using (3.14), we can
now obtain the second order term as:

& 1 &
B =5 Inpe (22) o ) FaPe (23) . (3.15)

After some tedious but straightforward manipulations, we
will get:

8

=0

—f (220 + " (221) (222~ (221)) + £ *(721) (zzz—f (z21))?

+2 (o) (ot () (- 2) - g + B 10
We can now obtain a second order approximation for
Inp, (22) by substituting the corresponding terms from
(3.11), (3.14) and (3.16) back into the expansion (3.6). In
the next step, we substitute the expansion for lnp, (22)
in (2.12) in order to find the corresponding expansion for
g* (22). Remember that g* (2;) is the optimal strategy for
the second station assuming that the first station has a fixed
strategy 1 (z1) = f(21) — 21. We have:

. _ 9 - 8
g' (=) = h2+5;;;mp(zz)—zzz+mlnpo(zz)

2
62 0 (aazlnpc(zZ)

) = 229 — (222~ f (221))+

=0

e“[f”(zzl)+2f”(zm)(zzz—f (zm))+2f’(z21)(-%1) (3.17)
1)

Our goal is to get an expansion for the cost, which is in the

. form (2.13). Using the expansxon for g* (z2) from (3.17),

we will have:

E [(s" (=))%] = E[(f (21))*] + 22 E [ fzm) (" (221)
+2f (221) (222~ f (221)) + 2f' (221) (~221/03))] ,(3.18)
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where we have neglected the fourth order term in e. Sub-
stituting this expansion back in (2.13), we will obtain the
following expansion for the cost:

J(f) = BB (a1~ f @) + E (£ (20))?]
~E [(f (zn1))*] = 2B [ f (z21) (/" (21)
+2f'2 (Zzl) (222 - f (121))+ 2f'(221) (-—221/0’3))] .(3.19)

Note that when the transmission is noiseless, i.e., € = 0 and
therefore z21 = 23, we have:

T () = KE|(z

and f (z,) = z is the obvious unique optimal solution.

-f@)Y], 620

The above expansion, however, is not exactly in our desired
form yet. This is because the third term on the right hand
side, which is an average over zy;, still depends on €. We
shall now rewrite the expansion in (3.19) by explicitly ex-
pressing the expectations based on the corresponding prob-
ability densities:

()= f_; ) [ - £ + 0] \/il?aoe_f’dt
-1 [f’(t) 22 (f(t)f"(t) —2/()F'() -‘;)]

0
LEY0)d 1

1
(r - f(®) 7t Tonoe

where we have substituted p (z2) = p (222, 221) = po(22)
in the third term, since the higher order terms would be mul-
tiplied by €2 and then would be neglected. Now, the third
term turns out to be zero, because:

,2

e 23 didr, (3.21)

2

RS ) e

/ 4SO e .
+o0

( (r—f (t))——e - (g dT) dt=0. (3.22)

—00
On the other hand, we can expand the probability density of
z21 up to the second order in e:

2
1 2 ag +e2

V2r(0f + €2)
1 -5';’! 1 —;.2
\—/‘_i—’-r-—a;e 0 +gm (t2 - 0’%) e —g (3.23)

Substituting (3.22) and the above expansion back in (3.21)
and neglecting the higher order terms in €, we can finally
get the following expansion for the cost:

~

I = f_ :° [k”(t—f(t))’] ﬁfraoe'f’dt




wéf +°°[4f(t)f’ (62 —21)1" )

= <]

a’—t’] 1 & a
2(4) L— e 3dt= J3 +€EJ;. (324)
+f () 0,3 \/'2-;00 0 1

The objective is now to obtain the function f which mini-
mizes the above approximated cost. In the next section, we
will use a variational approach in order to find the necessary
conditions for such a function.

4 Minimizing the Approximated Cost

So far, we have obtained an expansion for the cost assum-
ing that the transmission noise intensity is small. We have
approximated the cost by including only up to the second
order term in €. We should now try to ‘minimize this ap-
proximated cost and find the optimal f*. Obviously, the
corresponding optimal strategy would be valid only for a
small transmission noise intensity. However, it would still
be very helpful for the analysis of the behavior of the opti-
mal strategies when we deviate a little bit from the classical
information pattern by introducing a small communication
uncertainty.

We now use the Hamiltonian approach in order to find the
necessary conditions for the function £(t), which minimizes
our approximated cost. For simplicity, let's denote:

() 270, @) Ea@) =0

L h) =B =10, PO E e

€

1
V2rog
The Hamiltonian is then defined as 21

H=K (-2 (t))2 p(t)+ € (49:1 (t)z2(t) ;—a —2z1(t)u(t)

2—t2
%o
+22(t) =

]

)p(:) + @B+ N@ud), @D

where A\; and Az are the Lagrange multipliers which should
satisfy:

M) =-He = (21:’ (t—zi(t)) — 462:1:2(t)(—:§

—2¢%z, (t) o - a + 262u(t)) p(t) 4.2)
%o
Aa(t) = —Hay = —46321 (£) %p(t) — M) @43)
1]

But as we can see, the Hamiltonian is linear in u(t) and we
actually have a singular optimization problem. The singular
surface will be characterized by setting . and its deriva-
tives with respect to ¢ equal to zero, that is:

Hy = -28z()p(t) + 2a(8) =0, 44
and:

gz'n., = —2e’a’c1(t)p(t)—zézl(t)p(t)+,'\2 (¢) = 0. 4.5)
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Substituting () = —;‘gp(t) and also A, from (4.3), we
will get:
d

Euu = —268z3(t)p(t) — 2€° T2 (t):—gp(t) - () =0

) 4.6)
Differentiating again and substituting A; from (4.2), we will
have:

d%—%: (—-4e’u(t) + 4eza%zz(t) —2K%(t -zl(t))) p(t)=0.

CW))
Therefore, the corresponding u(t) on the singular surface is:

t K
u(t) = 22(t)b% ~5a (t- z1(t)) - 4.8)

Note that the first order generalized Legendre-Clebsch con-
dition, which is a necessary condition for u(t) to be mini-
mizing on the singular surface, is also satisfied, namely:
o (d

— | = < 4,

8u (dtzﬂ‘u) - 01 ( 9)
Therefore, the corresponding z1 () and 23(t), which mini-
mize our approximated cost, should necessarily satisfy the
following differential equations: -

il(t) = ZQ(t) (4.10)

. t K?
za(t) = zz(t);g ~ a3 (t—=2(t) @11

Since € is assumed to be small, we may assume the fol-
lowing form in order to obtain the solutions for the above
differential equations:

ao(t) + €az(t) + etag(t) + ... 4.12)
bo(t) + €ba(t) + *ba(t) +... (4.13)

z1 (t)
T2 (t)

Interestingly enough, by substituting the above z; and z2
back into the differential equations and comparing the coef-
ficients of the terms with the same order in €, we will get:

0=|- 2¢* +(2e2)“’_(2e=)3+ ot
=T 8262 T \K203 k2g3) _(1+1¢_’,)'

I

k3oy
(4.19)
Back to our original notation, we indeed have:
21
fla)=777—"7+ (4.15
(1+ 2
1]

As we can see, the solution is still linear with a coefficient
which is slightly different than the corresponding coeffi-
cient for the noiseless transmission case. Remember that
f (z1) = 2, is the optimal solution when there is no trans-
mission noise and note that for e = 0 in (4.15), we get
exactly the same solution, as we would expect. Also note
that as the value of k203 increases, the above solution ap-
proaches f (z1) = z1. In other words, increasing k303 has

| |




an effect similar to decreasing the communication uncer-
tainty. Given the above function f (z1), the corresponding
g* (22) can easily be obtained using (2.11). Note that it will
also be linear because of the Gaussian assumption for the
underlying uncertainties.

In fact, we would expect the optimal strategies to be lin-
ear. As we mentioned in Section 1, linear strategies were
shown to be asymptotically optimal for the Witsenhausen
example when the uncertainty of the information available
1o the first station is small [3]. In this paper, however, we
have considered a reformulation of Witsenhausen's problem
where the first station sends its information to the second
station through a low noise channel. These tw) scenario are
somewhat similar. Namely, in both scenarios, the second
station can determine the information available to the first
station fairly accurately. Specifically, in the first scenario,
the second station almost knows 21 because of its small un-
certainty, while in the second scenario, it can determine 2
from the information that is transmitted through a low noise

channel.

We would also expect the optimal strategies to approach the
corresponding strategies for the noiseless transmission case
as the value of z; and, in some sense, the signal to noise
ratio increases. This doesn’t seem t0 happen in the solution
(4.15). One may justify this by looking at the exponential
function in the cost. This function drives the integrand of
the cost to zero exponentially fast for large z;. Therefore,
the structure of the cost does not force the optimal solution
to approach f (z1) = 2135 21 increases. .

Substituting f(£) from (4.15) back into the cost (3.24), we
obtain the corresponding value of the cost:

. 1 4¢t , 4
J(f)—( o 2(262+-k;;h2-)ﬁ2€—;;a__%,
1+ &%) ’
(4.16)

The optimal cost for the noiseless transmission case is zero.
But if we use f (21) = 21 when the transmission is noisy,
we get the following cost:

() =26 @.17)

In other words, if we fix the strategies to be the optimal
strategies for the noiseless transmission case while we intro-
duce a small transmission noise, the increase in the cost will
be proportional to the transmission noise intensity. How-
ever, if we use (4.15), we can indeed improve the cost by
the fourth order in €.

5 Concluding Remarks

We analyzed an example of a decentralized stochastic sys-
tem. This example was a reformulation of the Witsen-
hausen counter-example where the first station was allowed
to send its information to the second station through a noisy
channel. The dynamics were linear, all the underlying un-
certainties were assumed to be Gaussian and the cost was

quadratic. However, the presence of the communication un-
certainty had generated a non-classical information pattern.
Therefore, in general, we would have a non-convex func-
tional optimization problem.

We considered the case where the communication uncer-
tainty was small. We followed an asymptotic approach
where we approximated the cost based on its expansion in
terms of the small transmission noise intensity. We showed
how minimizing the approximated cost can be seen as a
singular optimization problem. We then used a variational
approach in order to find the necessary conditions for the
asymptotically optimal strategies and showed that some rea-
sonable linear strategies would actually satisfy those condi-
tions. We also provided some intuitive explanations for the
behavior of those linear strategies and obtained their corre-
sponding cost.

All the derivations and the results in this paper show some
of the difficulties involved in dealing with decentralized sys-
tems as soon as we deviate a little bit from a classical, or at
least a partially nested, information patten. On the other
hand, even though we have modeled the communication
uncertainty in the simplest possible way, we have tried to
emphasize the role of communication uncertainties in gen- ‘
erating such information pattemns that are very difficult to
handle.

Finally, even though the optimization problem is generally
difficult for this class of systems, in some applications we
might be able to exploit the specific structure of the system
in order to obtain some reasonably good sup-optimal strate-
gies, which would yield an acceptable performance.
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Abstract

We consider a two-station decentralized Linear Quadratic
Gaussian problem, where the stations are allowed to com-
municate some pieces of information. We investigate a pos-
sible sub-optimal approach where the controls are obtained
based on two separate centralized problems. Various cases
will be considered in which the two stations communicate
their measurements, their controls or estimates, and their es-
timation residuals through noisy channels. We will mainly
focus on the closed-loop stability properties. We will show
that even if the stations communicate all their measurements
through low noise or even noiseless channels, the controls
obtained from the two centralized LQG problems may fail
to stabilize the closed-loop decentralized system.

1 Introduction

One of the most challenging problems for control engincers
is to design controllers for large scale decentralized sys-
tems which are composed of a large number of spatially
distributed interconnected subsystems. Uninhabited Air Ve-
hicles (UAV’s) flying in formation and Automated Vehi-
cles driving in platoons are two examples. Also, recent ad-
vances in computing and communication technologies have
introduced many new applications where dynamic systems
would form spatial networks. However, there are still ma-
jor difficulties in designing controllers for such systems that
could achieve some specified level of performance.

It is always difficult to find decentralized stabilizing con-
trollers as soon as the system has unstable fixed modes [3].
Incorporating uncertainties makes the problem even more
difficult. This can be seen in a seemingly simple counter-
example introduced by Witsenhausen in 1968, whose solu-
tion remains an open problem today. Witsenhausen showed
that finding the optimal decentralized strategies, even for

* This research was supported in part by the National Science Foun-
dation under Grant ECS-9502945, Air Force Office of Scientific Research
under Grant F49620-97-1-0272 and Office of Naval Rescarch under Award
N00014-97-1-0939

Box 951597, Los Angeles, CA 90095-1597
Tel: (310) 206-4451, Fax: (310) 206-2302
wolfe@seas.ucla.edu, speyer@seas.ucla.edu

a very simple two-stage problem with linear dynamics,
Gaussian uncertainties and quadratic cost, could be ex-
tremely hard as soon as the information pattern becomes
non-classical.

In defining a decentralized linear quadratic Gaussian prob-

" lem, we will assume all stations have linear dynamics and

all uncertainties are modeled as Gaussian processes. More-
over, each local controller only has access to its own lo- -
cal information, which includes its own measurements and
possibly information received through communication with
other stations. Such a decentralized nature of information
generally induces a non-classical information pattern for
this class of problems. Therefore, except for some spe-
cial structures, where the information pattern is actually a
classical pattern [2], the optimal strategics are usually un-
known. Some sub-optimal approaches , however, might be
proposed. One such approach is to treat the problem as
a collection of separate centralized problems. A motiva-
tion for this approach would become clearer if we assume
that each station is allowed to communicate all its measure-
ments through low noise communicatior. channels with all
the other stations. Even though a huge burden of compu-
tation and communication resource< :aay be needed in this
scenario, we would expect the controllers to be very close
to the optimal stabilizing decentralized controllers.

In the next section, we formulate a simple two-station de-
centralized LQG problem. In-Section 3, we discuss the
above mentioned sub-optimal approach, where we propose
a solution based on two separate centralized problems. In
Section 4, we investigate the stability properties of our con-
trollers in various scenarios. Namely, we first consider the
case where the stations do not communicate at all. Then, -
we assume that the stations can communicate their state es-
timates or equivalently their controls. In these scenarios, as
we shall see, there is little justification for our approach. But
later, we will discuss the case where the stations are allowed
to communicate their measurements. As we mentioned, our
approach seems very reasonable for this scenario, at least
when the transmission noise intensities are assumed to be
small. However, as one of the main results in this paper,

0-7803-5250-5/99/$10.00 © 1999 IEEE 4953
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we will show that even in this case, our controllers may fail
to stabilize the closed-loop system. This clearly contradicts
our expectation. In another scenario, the stations will be
allowed to communicate both their measurements and their
controls. We will see how sending the controls will help
us achieve at least closed-loop stability with our controllers.
Then, we assume that the stations communicate only their
estimation residuals. We will show that when the transmis-
sion noise intensities are small, sending estimation residu-
als would be enough to achieve closed-loop stability in our
sub-optimal approach. Our concluding remarks appear in
the final section.

2 Problem Statement

Consider the following decentralized linear system with two
stations:
&(t) Az(t) + B;u' () + Bau?(t) + w(t) 2.1)
z(t) Hz(t) + v (2) 2.2)
22(t) Hz(t) + v3(t), 2.3)

where z(t) € R™ is the global state vector, u!(t) € R™
and z'(t) € R™ are the control and the information vec-
tors for the first station and 43() € R™ and 23(t) € R™
are the control and the information vectors for the second
station. The process noise and the information noises are
denoted by w(t), v(¢) and v*(¢) respectively, which are
all assumed to be zero mean white Gaussian with intensity
matrices W, V* and V2, They are also assumed to be mu-
tually independent and independent of the initial state. Note
that we distinguish between measurement and information,
simply because of the fact that the information vector for
a station may also include the transmitted measurements of
the other station.

The original objective is to find u! = u!(z!) and u® =
u?(z?) in order to minimize the following cost:

T
J= Th_ix; TE [ / (zTQa: +ul Rl + u’TRgu’) dt] )
24

Since the stations in general have access to different infor-
mation, we have a non-classical information pattern. More-
over, the information pattern is not partially nested. That is,
the information available to each station is being affected by
the control action of the other station, while there is no way
for that station to obtain any information about those control
actions. Therefore, in general, we will have a non-convex
_ functional optimization problem, the solutions of which are
usually very difficult to find.

One possible sub-optimal approach is to solve two separate
centralized problems. We will discuss this approach in the
following sections. But there are two points that we need to
mention now. As we shall see, in many cases, we are fixing
the structure of our controllers only based on the central-
ized results. Even though this comes naturally out of our

lack of knowledge about the structure of the decentralized
controllers, it may well be justified for the case where the
stations communicate all their measurements through low
noise channels. The other point is our choice of model for
the uncertainty in the transmitted information. We simply
model the received information signal as the transmitted sig-
nal plus a Gaussian transmission noise. While this model is
realistic for analog communication systems, it may not be
well justified when digital communication is used. Namely,
in digital communication systems, the signal is quantized,
coded and sent through the channel. The channel noise may
still be assumed to be additive and Gaussian, but sophisti-
cated modulation and coding schemes make it difficult to
assume a simple additive Gaussian uncertainty for the re-
ceived information signal. However, if we try to incorpo-
rate the quantization effects along with the error probability
distribution for some good coding and modulation schemes
in order to model the communication uncertainties, we will
end up with models which could still be approximated, to
some degree, by simple additive Gaussian models. On the
other hand, since there are already major difficulties in deal-
ing with decentralized non-classical information patterns,
using more complex models for communication uncertain-
ties does not seem very reasonable at this point. Further-
more, we believe the results obtained under such a simpli-
fying assumption would still be helpful in giving us insight
towards the true nature of decentralized controllers.

3 A Sub-optimal Approach

One possible sub-optimal approach in dealing with decen-
tralized problems is to decompose them into several central-
ized problems in a reasonable fashion. One of our main ob-
jectives in this paper is to investigate such an approach and
elaborate more on some of the important properties of the
controllers under various communication scenarios among
the stations.

Consider the system (2.1) again. We would like to de-
sign the controls based on two centralized LQG problems.
Namely, let each station pretend that it has access to both
of the controls while it only has access to its own informa-
tion. In other words, the i-th station ({ = 1, 2) wants to
design uf = ui(z') and u} = ud(2f) in order to minimize
the following cost: :

T
Ji= lim —E[/ (7Qz + ui"Ryu + u§7R,u;) dt] .

Taoo T
(3.1
From the well-known centralized LQG results [1], the opti-
mal controls can be obtained as:
ui(®) 1_[- “lBTIIz‘(t) ST O P
ui(t) || -R7'BIN&(t) || -Ka2i() |* "~ '

where II is obtained from the steady-state control Riccati
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equation:

_TIA -ATI + 11 (B, R{*BY + B,R;'B] ) I- Q=0,
(3.3)
and ¢ is the local state estimate in the i-th station:

#i(t)=Az*(t)+ Byui (£) + Bauj(t) + Li (' () - H 2(2)),
(34
The estimator gain is obtained as:

Lep@E)T (V)™ i=12, (B9

where P; is the solution to the corresponding steady-state
filter Riccati equation:

AP+ PAT-FR(H)T (V)" H'P+W =0, i=1,2.

(3.6)
Note that the only difference in the two centralized prob-
lems comes from the fact that the stations have access to
different information, i.e. from the matrix H* and the noise
intensity matrix V*.

After solving the two centralized problems, u} and u3 will
be applied to the decentralized system. Obviously, there is
no reason for these controllers to be optimal for the decen-
tralized system. Also they are not guaranteed to preserve
any level of performance including even the closed-loop sta-
bility. However, in some cases, where the stations are al-
lowed to communicate some pieces of information through
low noise channels, we would expect the local stations to
generate very similar controllers, which in turn are expected
to be very close to the decentralized optimal controllers.

4 Closed-Loop Stability

Achieving closed-loop stability is one of the most important
performance properties that we would desire for our con-
trollers. On the other hand, the centralized LQG controllers
will always stabilize the system under some detectability
and stabilizabili*; conditions. But in general, there is no
reason to guarantee closed-loop stability if we apply the
same centralized controls to the decentralized system. In
this section, we will investigate the closed-loop stability
properties of our controllers in various situations, where the
stations communicate different pieces of information. Note
that in some cases, based on the available information for
each station, we may modify the estimators and hence devi-
ate a little bit from the original centralized LQG solutions.
In such cases, we will instead be looking at general linear
estimate linear feedback structures.

In order to analyze the dynamics of the closed loop system,
we define the local estimation errors and the difference be-
tween the local estimates respectively as:

ety £ z(t)-2'(0) @.1)
ealt) 2 z(t)-3() @42)
en(t) £ 2(t)-2%(). @3)

It is straightforward to obtain:

i = Az—By K13 - B3K33*+ w=(A-B, K, - B:K3) =
+ (B1K1 +B3K3)es ~ By Kienn+w “44)
éy = (A - Lsz) €eg — B1K1e13 +w - Lgt)2 4.5
éu = (A bl B1K1 - Bng - L1H1) €12
+ (LB - LA%)€ + Lyv* = Lav?, (4.6)

Hence, the closed-loop system dynamics can be written as
follows:

T A—lel—Bng B K, +B3K,
é2 | = 0 A-IL,H? @.n
é12 0 LH'-L;H?

—B1X]_ T I 0 0 w
-B:1 K, ea|+1I 0 -L» v,
A—B1K1—32K2—L1H1 €12 ] L] —Lz 02

4.1 No Transmission

Assume that each station only has access to its own mea-
surements, i.e., there is no communication between the sta-
tions. In this case, the closed-loop dynamics are in the form
(4.7) where H* and H? are the corresponding measurement
matrices for the stations, while v* and v? simply denote the
measurement uncertainties.

Let's assume that the stations have the same measurement
characteristics. Then it is clear from (4.7) that in order to
have a stable closed-loop system, we need to have stable
feedback dynamics along with stable local estimators and
compensators. We conjecture that these stability properties
are sufficient for the closed-loop stability even if -the sta-
tions do not have identical measurements. But to achieve
such stability properties, we need the global state 1o be de-
tectable from each local station. This condition, however, is
a very strong condition for a decentralized system. In most
decentralized systems the global state can not be detectable
from all individual stations. Moreover, even if such a strong
condition is satisfied, we still do not have any good justifi-
cation for our sub-optimal approach in this case. There is
really no reason to expect the two centralized controllers to
have a good performance if they are applied to the decen-
tralized system.

4.2 Control (Estimate) Transmission

In this scenario, the stations communicate only their con-
trols. In other words, each station has access to its own
local measurements and the transmitted control of the other
station. As we have already mentioned, the communica-
tion uncertainties are simply modeled as additive Gaussian
noises. Also all the communications are assumed to be in-
stantaneous. Therefore, the information available to the first
station is:

znn=Hz+uv, u(t)+valt) 4.8)
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while the second station has access to the following infor-
mation:

29 = Haz + vg, u; (t) + vy (t), 4.9)

where vy and vy are the corresponding transmission
noises. Each station now incorporates the received control
of the other station in its local estimator. Namely, the local
estimators are:

3“;1 = A2 Byuj+ Baua+ By +L; (21—H151) 4.10)

5;2 =A:%2+B1u1+Blvg1 + Boug+ Ly (23 —Hziz) , 4.11)
where:

L £ RETV 4.12)

L, £ pHTV;? (4.13)

and P; and P, are still the solutions to the corresponding
Riccati equations. Note that P; and P, are not the local es-
timation error covariances anymore. The following controls
are now applied to the decentralized system:

—-R, BTNz (t) = —-K14'(t) (4.14)
—R,BITI$?(t) = - K342(t), (4.15)

U (t)
u(t)

where II is the solution to the corresponding steady-state
control Riccati equation. It is straightforward to obtain the

dynamics of the closed-loop system:
T A—B1K1—32K2 B1K1 .BnKz ] z
é1 = 0 A—L1H1 0 €1
é2 0 0 A—-L;H; || ez

I 0 0 w 0 0]
+|I -L; O v! - Byivg |-B;} O .(4.16)
I 0 -Ly||v? 0 Va1 |

Itis clear that the closed-loop system can be sizbilized if the
system is stabilizable using both stations and i is detectable
from each individual station. As we mentioned earlier, this
latter condition can not be satisfied in many decentralized
systems. Also even if the control transmission is noiseless,
there is still no reason to believe that these centralized con-
trollers are, in any sense, close to the optimal decentralized
controllers.

Note that communicating the local estimates is actually
equivalent to communicating the controls. This is because
we have a cooperative structure. That is, each station can be
informed of the control strategy and specifically the estima-
tor and feedback gains of the other station a priori. There-
fore, the stations can simply calculate either the control or
the estimate upon receiving the other.

- Finally, note that we have incorporated the transmitted con-
trols in the local estimators in a rather straightforward man-
ner . Whether there are better ways to incorporate this new
information is a problem to be addressed.

4.3 Measurement Transmission

Assume now that the stations can communicate all their
measurements. In this case, the information available to the
stations can be expressed as:

1 8 [#] Hiz+v, A 1

zr = [2§]—’[sz+ + 1]——H:.t:+v “4.17)
2 & [Z]_[Hiz+vi+vz]a 2

zt = [z;‘.']_[ Haz + ]—Hz+v,(4.l8)

where v12(t) and v (¢) are independent transmission
noises, which are also assumed to be independent of other
underlying uncertainties in the system. Note that in this sce-
nario, both stations have the same information matrix H.
Therefore, there can not be any decentralized fixed mode in
this case.

Similar to the previous cases, we solve two separate central-
ized LQG problems. For the first station we get:

u(®)| _[-ROBIIS ()] _[-Kig'()
[“;(‘)]—[— 1“IB:TH:;‘(t)]"[—K;;l(t) » (419)

where:
&' = A2'+ Byul + Byu} + Ly (' = H3') (4.20)
L2pHT(VY)™ (4.21)
AP, + PAT-PHT(V)'HP, + W=0 (422)

a[H] nalW 0
ne[E]ve[% 0]

and for the second station:
ul(t)] _ [-RiIBIN&(8)] _ [-K133(t) 4.24)
u3(t) —R;'BIN#%(t) -K22(8) |
where:

82 = A2+ Biu? + Boul + Ly (- H&?)  (4.25)
L2 RHT(VY)™ (4.26)
AP, + PAT-RHT(V}) 'HR, + W=0 (427)

Hé[g: ] V”é[vl“(‘)"12 “,’2] 4.28)

In this scenario, we have a very good justification for our
sub-optimal approach. Namely, if the transmissions are
noiseless, the two centralized problems would be identical.
Therefore, we would expect our controllers to be the opti-
mal decentralized controllers, which would preserve all the
desired properties including the closed-loop stability. Fur-
thermore, if the transmissions are noisy but the transmission
noise intensities are small, we would still expect the con-
trollers to be close to the optimal stabilizing decentralized
controllers. In other words, we would not expect any dras-
tic change in the behavior of the controlled decentralized
system upon introducing some small transmission noise.
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We shall now look at the closed-loop stability properties. It
is easy to obtain the following closed-loop system dynamics
which is valid for any linear estimate linear feedback struc-

ture:

é2 | = 0 A-L,H (4.29)
612 0 (L -L2) H

-—B;Kl T I 0 0 w
-B;K; ea [+ 0 -L, v,
A-B,K1—-B:K2—-L1H| | e12 0 Ly —La2jf[v?

We notice that the closed-loop system matrix has an inter-
esting structure. The first diagonal block matrix is simply
the matrix associated with the feedback dynamics, which
could be stabilized if the system is stabilizable using both
control stations. The second diagonal block matrix could
also be made stable under a simple detectability condition.
That is, if the global state is detectable using both stations.
Note that this is a much weaker condition than detectabil-
ity from each individual station, which would be required if
the stations did not communicate their measurements. The
third diagonal block matrix, however, is the matrix corre-
sponding to the compensator dynamics, which may not be
stable.

[ T } A—B;Kl—Bng B, K;+B3K;

This is a significant result. Let’s assume that the transmis-
sion noise intensities are very small. Then the estimator
gains would be almost the same and the closed-loop system

matrix would be very close to a block upper-triangular ma- -

trix. We can see that if the compensator is unstable (which
might be the case in many systems, especially those with a
non-minimum phase structure), the closed-loop system will
become unstable because of the unstable dynamics govern-
ing the difference between the estimates of the two local es-
timators. Actually, even when the transmissions are noise-
less, there is still an unstable subsystem corresponding to
e12. This does not comply with our initial expectation. Note
that there is no forcing input for this unstable subsystem, but
any small nonzero e;2 could propagate to infinity! Such a
nonzero difference between the local estimates, which could
be generated from any difference in the initial conditions of
the local estimators, round off errors, etc., would again in-
duce a non-classical information pattern.

4.4 Measurement and Control Transmission

We saw that if the stations communicate only their measure-
ments, our specific sub-optimal controllers may not be able
to stabilize the closed-loop system, even though they will
yield the centralized optimal stabilizing controllers, in the
limit, when the transmission noise intensities go to zero. In
this section, we will see how transmitting the controls along
with the measurements will help us stabilize the closed-loop
system, using a similar sub-optimal approach.

As in the previous case, assume that the stations transmit
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their measurements through noisy channels, i.e.:

z‘(t)é[z%(t)]=[ Hya(t) + i (8) ](4.30)

Z7(t) Haz(t) + va(t) + vai(2)
a [2(®)] _ [Hiz(t) + n(t) + valt)
zz(t)—[z%(t)]_[ lezz(t)1+vn(:;u ] 43D

Also assume that the stations communicate their controls.
For a little more generality, lets assume that the communi-
cation uncertainties on the controls are modeled by an ad-
ditive Gaussian uncertainty along with a scale-factor error.
Namely, the first station also has access to (I + Lg)u?(t) +
vea(£), whiie the second station receives (I + Aq)u®(t) +
g1 (). Trensmission noises ve1 (£) and vgz(t) are assumed
to be independent of each other and also independent of all
other uncertainties in the system.

Similar to Section 4.2, each station incorporates the trans-
mitted control of the other station in its local estimator. That
is, the estimators are constructed in the following manner:

#1 = A#'+ Byu'+ By (I+ D2) v+ Bava+ Ly (s*-HE')

_ (4.32)
$2= Aﬁ‘z-i-B], (I+ A],) ‘ul-l-B],vn +Bzu2+ Lo (zz—Hﬁz) ,
(4.33)

where: '
LA2pHT (VY™ 4.34)
L2 pHT (V3™ (4.35)

and P, and P; are obtained from the same Riccati equations
as before. Note that P; and P, are no longer the estimation
error covariances. Using the same definitions for the error
variables e; (¢) and e3(t), the closed-loop dynamics may be
written as: :

é1 = —BszAz A—LlH BngAz
éz “_ "B]_K]_Al BlKlAl A—LzH_

I 0 0 w 0 0]
+{r -L, 0O vi|{—Bylus |-B1| 0 |.(4.36)
I 0 -L, v? 0 Vi1 |

As we can see, when the scale-factor errors A; and Az are
small, the closed-loop system matrix is nearly block upper-
triangular. The first diagonal block matrix can be made sta-
ble if the system is stabilizable using both stations. The sec-
ond and the third diagonal block matrices can also be made
stable if (A, H) is detectable.

[z] A—B1K1—BzK2 B1K1 BnKz ] [:c]

We conclude that when the stations communicate their con-
trols as well as their measurements, our sub-optimal ap-
proach will at least yield a stable closed-loop system, even
if there is small scale-factor errors on the control transmis-
sions.

4.5 Estimation Residuals Transmission
So far, we have seen that in order to design a set of sub-
optimal stabilizing controllers by solving two centralized




problems for a two-station decentralized system and under
some reasonable stabilizability and detectability assump-
tions, the stations need to communicate both their measure-
ments and controls.

In this section, we investigate the case where the sta-
tions communicate their estimation residuals instead of their
measurements and controls. In other words, the first station
has access to the following information:

zy = Hiz + v, (22 - Hzfz) + ¥¢2, 4.37)

while the information available to the second station is:

z2=Haz+va, (21— Ha&') +vn, (4.38)

where vg; and vz denote the transmission noises. In the
previous cases, the linear structure of the estimators and the
controllers naturally came out of the two centralized optimal
control problems. In this case, however, we will impose
a linear structure on our estimation and control such that
each station will linearly incorporate the noisy residual of
the other station, i.e., for the first station, we have:

ul(t) = —Ki8'(t), ui(t) = -Kad'(t)  (4.39)
# = A2'+ Biul+ Bauj+ L} (21— Hi2')
+L} (22— H2%) + L3vea, (4.40)

while for the second station, we get:

ui(t) = —K12*(t), u3(t) = —Ka2%(t)  (44D)
#2 = A2+ Biul+ Baud+ L} (21— Hy ')
+L§ (Zz—Hzﬁz) + szn, “4.42)

The gains may now be obtained based on some optimal-
ity criteria. Note that when the transmission noises v and
g2 are zero, the local estimators will have exactly the same
structure. Therefore, we expect the estimators to have the
same gains in the noiseless transmission case, regardless of
how the gains are obtained. Also note that each station has
linearly incorporated the received estimation residual of the
other station. Even though this simplifies the problem, it is
not necessarily the best way of incorporating this new piece
of information.

Similarly to the previous cases, it is straightforward to ob-
tain the closed-loop dynamics as the following:

z A-B; K, -B3K, B1K; + B3K,
é |=t 0 A-LiH,-LIH, (443)
0 (L3 - L) Ha
—B1K1 z
L¥H1 - B K, €2

A—B1K1—Bsz—(L{—L§) H1 €12

é12

I 0 -0 w 0 0
+{I "Lg —Lg vl - L} vu+| 0 |ve.
0 (Li-L3) (Li-L3)f[va) L L
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As we can see, when the transmission noise intensities are
small, the closed-loop system matrix will be close to a
block upper-triangular matrix, which can easily be stabi-
lized when the system is stabilizable using both stations
and (A, [ HT HT ]T ) is detectable. This shows us that

in some $ense, the estimation residuals are more valuable
than the measurements and communicating the residuals is
enough to stabilize the system by solving two centralized

problems. .
5 Concluding Remarks

A two station decentralized LQG problem was formulated,
where the local controllers had to be designed based on
some local information in order to minimize a single com-
mon cost. This problem generally has a non-classical in-
formation pattern and the optimal controls are usually un-
known. One of the first possible sub-optimal approaches is
to decompose the problem into separate centralized prob-
lems. In this paper, we investigated such an approach
for different communication scenarios between the stations,
namely, when the stations communicate their controls, their
measurements or both, or their estimation residuals.

We showed that even though our approach is quite reason-
able for the case where the stations communicate all their
measurements, it may fail to stabilize the closed-loop sys-
tem as soon as the compensator is unstable. Then, we
showed how this difficulty can be removed if the stations
either communicate both their measurements and their con-
trols or communicate their estimation residuals. We should
also mention that a similar problem can be formulated for
discrete-time systems and similar results can be obtained.

All these results show some of the fundamental differences
between the centralized and the decentralized structures.
Moreover, we have tried to elaborate un the role of com-
munication among the stations and the corresponding un-
certainties. While many new appli.ations for spatially dis-
tributed dynamic systems are emerging, there are still major
difficulties that need to be addressed.
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A generalized least-squares fault-detectioh filter
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SUMMARY

A fault detection and identification algorithm is determined from a generalization of the least-squares

derivation of the Kalman filter. The objective of the filter is to monitor a single fault called the target fault

and block other faults which are called nuisance faults. The filter is derived from solving a min-max problem

with a generalized least-squares cost criterion which explicitly makes the residual sensitive to the target fault,

but insensitive to the nuisance faults. It is shown that this filter approximates the properties of the classical

fault detection filter such that in the limit where the weighting on the nuisance faults is zero, the generalized

least-squares fault detection filter becomes equivalent to the unknown input observer where there exists.
a reduced-order filter. Filter designs can be obtained for both linear time-invariant and time-varying

systems. Copyright © 2000 John Wiley & Sons, Ltd.

KEY WORDS: fault detection and identification; unknown input observer; worst case design; time-varying
system .

1. INTRODUCTION

Any system under automatic control demands a high degree of system reliability. This requires
a health monitoring system capable of detecting any plant, actuator and sensor fault as it occurs
and identifying the faulty component. One approach, analytical redundancy which reduces the
need for hardware redundancy, uses the modelled dynamic relationship between system inputs
and mcasured system outputs to form a residual process used for detecting and identifying faults.
A popular approach to analytical redundancy is the unknown input observer [1] which divides
the faults into two groups: a single-target fault and possibly several nuisance faults. The nuisance
faults are placed in an invariant subspace which is unobservable to the residual. Recently,
approximate unknown input observers have been developed which have improved robustness to .
uncertainties and applicable to time-varying systems [2,3]. :

In this paper, a generalized least-squares fault detection filter, motivated by Chung and Speyer
[2] and Bryson and Ho [4], is presented. A new least-squares problem with an indefinite cost
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criterion is formulated as a min-max problem by generalizing the least-squares derivation of the
Kalman filter [4] and allowing the explicit dependence on the target fault which is not presented
in Reference [2]. Since the filter is derived similarly to Reference [2], many properties obtained in
Reference [2] also apply to this filter. However, some new important properties are given. For
example, since the target fault direction is now explicitly in the filter gain calculation, a mecha-
nism is provided which enhances the sensitivity of the filter to the target fault. Furthermore, the
projector, which annihilates the residual direction associated with the nuisance faults and is
assumed in the problem formulation of Reference [2], is not required in the derivation of this
filter. Finally, it is shown that this filter completely blocks the nuisance faults in the limit where
the weighting on the nuisance faults is zero. For time-invariant systems, the nuisance faults are
placed in 2 minimal (C, 4)-unobservability subspace, and the generalized least-squares fault
detection filter becomes equivalent to the unknown input observer. For time-varying systems, the
nuisance faults are placed in a similar invariant subspace, and the generalized least-squares fault
detection filter extends the unknown input observer to the time-varying case. In the limit,
a reduced-order filter is derived for time-varying systems.

The problem is formulated in Section 2 and its solution is derived in Section 3 [2,4]. In Section
4, the filter is derived in the limit [2,5]. In Section 5, it is shown that, in the limit, the nuisance
faults are placed in an invariant subspace. In Section 6, the reduced-order filter is derived in the
limit. In Section 7, numerical examples are given.

2. PROBLEM FORMULATION

Consider a linear, observable system with two failure modes [1,2]
%=Ax + Bu+ Fyuy + Fo 1, ' (1a)
y=Cx+v (1b) -

where u is the control input, y is the measurement, v is the sensor noise, u, is the target fault, and
4, is the nuisance fault. All system variables belong to real vector spaces, x € Z,ue¥,andye.
System matrices 4, B, C, F; and F, are time-varying and continuously differentiable. The failure
modes, p; and y,, model the time-varying amplitude of the failure while the failure signatures, F
and F;, model the directional cha-ucteristics of a failure. Assume F, and F, are monic so that
F, #0and F, # Oimply F, p; # 0and F, 1, # 0, respectively. In References [1,2],itis shown that
this model, used to determine the fault detection filter, represents actuator, sensor and plant
faults. There are two assumptions about the system (1) that are needed in order to have a well-
conditioned unknown input observer. Assumption 2.1 ensures that the target fault can be isolated
from the nuisance fault [1,2]. The output separability test is discussed in Remark 1 of Section 5.
Assumption 2.2. ensures a non-zero residual in steady-state when the target fault occurs for
time-invariant systems [3,6].

Assumption 2.1.

F, and F, are output separable.

Assumption 2.2.

For time-invariant systems, (C, 4, F;) does not have invariant zero at origin.

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process. 2000; 14:747-757
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The objective of blocking the nuisance fault while detecting the target fault can be achieved by
solving the following min-max problem:

. 1 1 .
min max max '2'J. (Ipsld; = Bualliop — ly = Cxlip-) dr — 3 Ix(to) — Rollf, )
to

13 p1 x(to)

subject to (1a). Note that, without the minimization with respect to u, {2) reduces to the standard
least-squares derivation of the Kalman filter [4]. ¢ is the current time and y is assumed given. Q,,
0., V and I, are positive definite. y is a non-negative scalar. Note that 0, Q,, IT, and y are
design parameters to be chosen while ¥ may be physically related to the power spectral density of
the sensor noise because of (1b) [4]. The interpretation of the min-max problem is the following.
Let u¥, uf and x*(t,) be the optimal strategies for u,, 4, and x(to), respectively. Then, x*(t| ), the
x associated with u¥, u¥ and x*(to), is the optimal trajectory for x where t € [0, £] and given the
measurement history Y; = {y(t)|to <t <t}. Since p; maximizes y — Cx and p, minimizes
y — Cx, y — Cx* is made primarily sensitive to u, and minimally sensitive to u,. However, since
%* is the smoothed estimate of the state, a filtered estimate of the state, called %, is needed for
implementation. From the boundary condition in Section 3, at the current time ¢, x*(t|Y,) = x(t).
Therefore, y — C% is primarily sensitive to the target fault and minimally sensitive to the nuisance
fault. Note that when Qj; is larger, y — C# is more sensitive to the target fault. When y is smaller, -
y — C#% is less sensitive to the nuisance fault. In Reference [2], the differential game blocks the
nuisance fault, but does not enhance the sensitivity to the target fault. In Section 5, it is shown that
the filter completely blocks the nuisance fault when y is zero by placing it into an invariant
subspace, called Ker S. Therefore, the residual used for detecting the target fault is

r=H(y— C%) 3)
where %, the filtered estimate of the state, is given in Section 3 and
A:%-% KerA=CKerS, H=1I-CKerS[(CKerS)'C KerS]™YCKerS)T (4)

KerS is given and discussed in Sections 4 and 5.

3. SOLUTION

In this section, the min-max problem given by (2) is solved [2,4]. The variational Hamiltonian of
the problem is

H = %(“#1"(22;‘ - "#2"3;2;' — lly = Cx||$-)) + A(4x + Bu + Fipy + Fap13)

where 1e#" is a continuously differentiable Lagrange multiplier. The first-order necessary
conditions [4] imply that the optimal strategies for y;, y, and the dynamics for 1 are

1
pt=—0iFid, ui =;Q2F2Tl, l==A"-CV7 iy —Cx)

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process. 2000, 14:747-757
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with boundary conditions
Alto) = Mo [x*(to) — %0, A®)=0 (5)

By substituting u¥ and p3 into (1a), the two-point boundary value problem requires the solution to

7 A 1F0,F — FQFT ) [x* Bu y
Al | cvic —AT Al —C'v"Yy ©)

with boundary conditions (5). The form of (5) suggests that
A=TI(x* — %) ™

where II(to) = 1o, £(to) = %o and X is an intermediate state. By differentiating (7), using (6),
adding and subtracting ITA% and C™V ~!C%, the following dynamic filter structure results:

T£ =A% + I1Bu + CV ™Yy — CR), X(to) = %o (8)
~TI=TIA+ A + H(%FZQZFI - F,Q,F,T)n —C'vic, M) =1, 9)

Since x* = X at current time t (5), the generalized least-squares fault detection filter is (8). Note
that (8) is used by the residual (3) to detect the target fault.

4. LIMITING CASE
In this section, the min-max problem (2) is solved in the limit where y is zero [2,5]. When y is zero,
there is no constraint on u, to minimize y — Cx. Therefore, the nuisance fault is completely

blocked from the residual which is shown in Section 5.
In the limit, the min-max problem (2) becomes

#y K2 x(fo) t

, 1 1 A
min max max ; J (sl =ty = Cxllp-1) dr — 5 Ix{to) = %o I, (10)

This problem is singular with respect to u,. Therefore, the Goh transformation [5] is used to form
a non-singular problem. Let

$1(0) = j ) ds, @ =x— F

fo

By differentiating «; and using (1a),

d1=Ad1 +BU+F1[11 +B1¢1 (11)

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process. 2000; 14:747-757
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where B, = AF, — F,. By substituting a, into (10), the new min-max problem is

. I -
min max max 5.[ [luld- = 191 lEicv-icr, = Iy = Conllp- + (v = Ca) V™' CF ¢
to

By ¢ 2.(t)
-— 1 A
+ ¢TF3CTV "y — Cay)] dr — 3 las(23) + F201(t5) — %ollfs, (12)

subject to (11). If F3CTV ~'CF, fails to be positive definite, (12) is still a singular problem with
respect to ¢;. Then, the Goh transformation has to be used until the problem becomes
non-singular. If FXCTV™!CF, =0, let

T

@a1) = J. oi(s)ds, @y = o — B¢,

Then, d; = Aa; + Bu + Fypuy + By, where B, = AB; — B,. If FXC"V™!CF, >0, the Goh

transformation is applied only on the singular part [6]. The transformation process stops if the

weighting on ¢,, BICTV ~!CB,, is positive definite. Otherwise, continue the transformation until

there exists B, such that the weighting on ¢y, Bf—CTV ~'CB, -, is positive definite. Then, in the
limit, the min-max problem (2) becomes

. I -
'H}‘ln méax m(“i}: E.[ [Hlllﬂczz;' - ||¢k|hza{_,cw-lcs._, —lly— Cak“lz"' + - Cak)TV xCBk—ld)k
1 x Il 129 .

1 - -
+ $iB- 1 CTV Ty — Can)l de — 5 les(ts) + B (ta) — Zollfr, (13)

subject to & = Aa, + Bu+ Fyp; + B¢, where B=[F, B, B, --B,-;] and ¢=
[T ¢7 -+ ¢x]". The min-max problem (13) can be solved similarly to (2). Therefore, the
derivation [6] is not repeated here. The limiting generalized least-squares fault detection filter is

S% = SA% + SBu + [SBy(BI-,C"V~'CB,- )BT CTV T+ CTH'V " 'Hl(y — C%) (19)
where
—~S=SA+ATS + S[B,‘(BI_1CTV_1CB,‘..1)_IB;‘r — F,0,FTIS-=CTH'"V"'AC  (195)
H=1—CBy_(Bl-,C"V~'CB,_) 'BI_,C"V~" and A=A — B,(Bf-,C"V~'CB,-)"'Bi-,
C™V ™ IC subject to £(tg) = %o and S(t¢) = I, — II,B(B™I1,B) ™ *B™II,. However, (14) cannot

be used because S has a null space which is shown in Theorem 4.1. Therefore, a reduced-order
filter for (14) is derived in Section 6.

Theorem 4.1
S[Bx-1 Bx-2 - By F]=0.

Proof. The proof is similar to Reference [2] and can be found in Reference [6]. O
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5. PROPERTIES OF THE NULL SPACE OF S

In this section, some properties of the null space of S are given. It is shown that the null space of
S is equivalent to the minimal (C, 4) — unobservability subspace for time-invariant systems and
a similar invariant subspace for time-varying systems. Therefore, the limiting generalized least-
squares fault detection filter is equivalent to the unknown input observer and extends it to the
time-varying case. The minimal (C, A)-unobservability subspace is a subspace which is (4 — LC)-
invariant 2nd unobservable with respect to (HC, 4 — LC) for some filter gain L and projector
A [1]. One method for computing the minimal (C, A)-unobservability subspace of F,, called
T, here,is 7, = W, ® ¥, [1] where W3 = [By—y Bx-2 -+ By F;]isthe minimal (C, A)-invari-
ant subspace of F, and ¥ is the subspace spanned by the invariant zero directions of (C, A4, F).
Note that the associated H is

ﬁ:qy—’g, Kerﬁ = CBk—h ﬁ =]- CBk—I[(CBk_x)TCBk_]J_l(CBk_l)T (16)
Note that Ker A = Ker A.
Theorem 5.1 shows that the null space of S is a (C, A)-invariant subspace. Theorem 5.2 shows

that the null space of S is contained in the unobservable subspace of (AC, A - LC).

Theorem 5.1.

Ker S is a (C, A)-invariant subspace.

Proof. The dynamic equation of the error, e = x — %, in the absence of the target fault and
sensor noise can be obtained by using (1) and (14):

Sé = [SA + SBy(BI-,C'V"'CB,_))"*Bl-,CTV~iC + C'H'V"'HCle

because SF, = 0. By adding Se to both sides and using (15),

d - -
a(se) = —{[4- By(Bi-:C"V™'CBy-y) ‘B, CTvi T
+S[—F1Q1F'1r+ Bk(BI_ICTV-ICB;‘_1)_1BI]}SC (17)
If the error initially lies in Ker S, (17) implies that the error will never leave Ker S. Therefore,
Ker S is a (C, A)-invariant subspace. 0O
Theorem 5.2.

Ker S is contained in the unobservable subspace of (HC, A — LC).

Proof. Let { € Ker S. By multiplying (15) by {T from the left and { from the right,
d T TrTOTy —1
E(CSC)=CCFIV HC!{=0
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Then, HC{ =0 because AC{ =0 and Ker H = Ker H. From Theorem 5.1, KerS is a
(C, A)-invariant subspace. Therefore, Ker S is contained in the unobservable subspace of
(AC, A - LC). O

From Theorem 4.1, CKerS 2 CB,.,. From Theorem 5.2, CKer S € CB,-,. Therefore,
C Ker S = CB,_, and H (4) is equivalent to H (16). Note that (16) is a better way to form A
which is used by the residual (3) because it does not require the solution to the limiting Riccati
Equation (15).

For time-invariant systems, it is important to discuss the invariant zero directions when
designing the fault detection filter. The invariant zeros of (C, A4, F,) will become part of the
eigenvalues of the filter if their associated invariant zero directions are not included in the
invariant subspace of F, [1]. From Reference [3,6], the null space of S includes all the invariant
zero directions if the nuisance fault direction is modified to the invariant zero directions.
Therefore, the invariant zeros will not become part of the filter eigenvalues. From Theorem 4.1
and modified nuisance fault direction, the null space of S contains the minimal (C, A)-unobserva-
bility subspace of F,. By combining with Theorem 5.2, the null space of S is equivalent to the
minimal (C, A)-unobservability subspace of F,, and the limiting generalized least-squares fault
detection filter is equivalent to the unknown input observer. Note that the invariant zero and
minimal (C, A)-unobservability subspace are only defined for time-invariant systems. For time-
varying systems, Theorems 4.1, 5.1 and 5.2 imply that the null space of S is a similar invariant
subspace.

Remark 1.

In order to detect the target fault, F; cannot intersect the null space of S which is unobservable
to the residual. If it does, the target fault will be difficult or impossible to detect even though the
filter can still be derived by solving the min-max problem. If F; does not intersect the null space of
S, F, and F, are called output separable [1], and the output separability test can be stated as
CBy-1nCBz-, =0 where B;_, is the Goh transformation of F.

6. RELUCED-ORDER FILTER

In this section, the reduced-order Giter is derived for the limiting generalized least-squares fault
detection filter (14). The reduced-order filter is necessary for implementation because (14) cannot
be used due to the null space of S. Since S is non-negative definite, there exists a state
transformation I' such that

[§ 0
I'ST =
B o
where § is positive definite. Theorem 6.1 provides a way to form the transformation.
Theorem 6.1.
There exists a state transformation T where
Z, 0
Z KerS]=T :
[Z KerS] [ o Zz] (19)
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Z is any n x (n — k,) continuously differentiable matrix such that itself and Ker S span the state
space where n = dim Z and k, = dim(Ker $). Z, and Z, are any (n — k;) x(n — k;) and k; xk,
invertible continuously differentiable matrices, respectively. Then, the T' obtained from (19)
satisfies (18).

Proof.

0 0 - 01_
Kch—r[zz] = Sr[zz]_o = I'ST [zz]_o

Since Z, is invertible by definition and I'"ST is symmetric, (18) is true. g

Note that Theorem 6.1 does not define I uniquely and I can be computed a priori because
Ker S can be obtained a priori.

By applying the transformation to the estimator state, [ ~'% & 7 = (AT 471" By multiplying
(14) by I'* from the left, using IT ™! = I, and adding T"STT"™'% to both sides, the limiting filter
can be transformed into two equations,

Sh1 = S§(A1; — T1)i + S(412 — Ti2)fy + SMu

+ [5G,(DICIV™'C,D,) "' DICIV ™! + CIHTV T H](y — Cifiy — Caff) (20a)

0=CIHTV 'H(y — Cii, — Ca7)) ' (20b)
where
r,, T A, A M
r“x‘:[ n ”], F"Al‘=[ 1 ”], r'lB=[ ‘:', Cr=[C, C
r21 1_22 A21 A22 M2 [ ! 2]

N 0 G
Ry - 1 a2y - - -1 = 1
T IV A RS

Note that ™! and I" can be computed a priori from (19). From (20b),
because y — Cyfj; — C.fj, is arbitrary. By multiplying (15) by I'T from the left and I from the

right, subtracting I'"ST and I'SI™ from both sides, and using I'T ™" = I, the limiting Riccati
equation can be transformed into two equations, '

0 =S8[A41; — T12 — Gy(D3CIV ~'C,D,) ' DICIV I CA] ' (22)
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—§=3[A;, — Ty; — Gy(DICTV'C,D;) ™' DICIV™ICL]
+[An-Tuu—- Gl(Dgch_lczDz)_IDEC.{V—‘CJTS
+ S[—N,Q,NT + G(DICIV~'C,D;)"*G11S§ — CIH"V'HC, (23)

By substituting (21) and (22) into (20a), the reduced-order limiting generalized least-squares fault
detection filter is

A=A —T1)f; + Myu+[Gy(DICTV™ 1C,D,) ' DICIV T 4+ 8T ICTHTV T H](y— Cifiy)
(24
Note that 'y, can be computed a priori. In the limit, the residual (3) becomes
r=Hy—-Ci) (25)
because AC, = 0 from (21) and Ker A = Ker H.

7. EXAMPLE

In this section, two numerical examples are used to demonstrate the performance of the
generalized least-squares fault detection filter. In Section 7.1, the filter is applied to a time
-invariant system. In Section 7.2, the filter is applied to a time-varying system.

7.1. Example 1

In this section, two cases for a time-invariant problem are presented. The first one shows that the
sensitivity of the filter (8) to the nuisance fault decreases when y is smaller. The second one shows
that the sensitivity of the reduced-order limiting filter (24) to the target fault increases when Q, is
larger. The system matrices are

0 3 4 01 0 0 5
A=|1 2 3|, C=[0 0 1], Fy=10], F,=|1
0 25 1 1

In the first case, the steady-state solutions to the Riccati equation (9) are obtained with
weightings chosen as Q; = 1,0, = 1,and ¥ =1 when y = 10™* and 1079, respectively. The top
two figures of Figure 1 show the frequency response from both faults to the residual (3). The left
one is y = 107%, and the right oneis y = 1076, The solid lines represent the target fault, and the
dashed lines represent the nuisance fault. This example shows that the nuisance fault transmission
can be reduced by using a smaller y while the target fault transmission is not affected.

In the second case, the steady-state solutions to the reduced-order limiting Riccati equation
(23) are obtained with V' = 10™*I when Q, = 0 and 0.0019, respectively. The lower two figures of
Figure 1 show the frequency response from the target fault and sensor noise to the residual (25).
The left one is Q, =0, and the right one is @, =0.0019. The solid lines represent
the target fault, and the dashed lines represent the sensor noise. This example shows that the
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Figure 1. Frequency response of the residual.

sensitivity of the filter to the target fault can be enhanced by using a larger Q. The sensor noise
transmission also increases because part of the sensor noise comes through the same direction as
the target fault. However, the sensor noise transmission is small compared to the target fault
transmission. In this case, the nuisance fault transmission stays zero and is not shown in these
figures. Note that when @, = 0, the generalized least-squares fault detection filter is similar to
Reference [2] which does not enhance the target fault transmission.

7.2. Example 2

In this section, the filter (8) and the reduced-order limiting filter (24) are applied to a time-varying
system which is from modifying the time-invariant system in the previous section by adding some
time-varying elements to 4 and F, matrices while C and F, matrices are the same:

—~cost 3+ 2sint 4 S —2cost
A= 1 2 3—2cost|, F;= 1
Ssint 2 S+3cost 1+sint

The Riccati equation (9) is solved with Q; =1,Q, =1,V =Iandy = 1075 for t € [0, 25]. The
reduced-order limiting Riccati equation (23) is solved with the same Q, and V. Figure 2 shows the
time response of the norm of the residuals when there is no fault, a target fault and a nuisance
fault, respectively. The faults are unit steps that occur at the fifth second. In each case, there is no
sensor noise. The left three figures show the residual (3) for the filter (8). There is a small nuisance
fault transmission because (8) is an approximate unknown input observer. The right three figures
show the residual (25) for the reduced-order limiting filter (24). Note that the nuisance fault
transmission is zero. This example shows that both filters, (8) and (24), work well for time-varying

systems.
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Figure 2. Time response of the residual.

8. CONCLUSION

The generalized least-squares fault detection filter is derived from solving a min-max problem
which makes the residual sensitive to the target fault, but insensitive to the nuisance faults. In the
limit where the weighting on the nuisance faults is zero, the filter becomes equivalent to the
unknown input observer which places the nuisance faults into a minimal (C, A)-unobservability
subspace and there exists a reduced-order filter. Since the target fault is explicit in the problem
formulation, the sensitivity of the filter to the target fault can be enhanced. Filter designs can be
obtaines for both linear-time-invariant and time-varying systems.
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Abstract

A class of robust fault detection filters is generalized
from detecting single fault to multiple faults. This
generalization is called the optimal stochastic multiple-
fault detection filter since in the formulation, the un-
known fault amplitudes are modeled as white noise.
The residual space of the filter is divided into several
subspaces and each subspace is sensitive to only one
fault (target fault), but not to other faults (nuisance
faults), in the sense that the transmission from nui-
sance faults to the target residual space is small while
the transmission from target fault is large. It is shown
that this filter approximates the properties of the clas-
sical fault detection filter such that in the limit where
the nuisance fault weighting goes to infinity, the opti-
mal stochastic multiple-fault detection filter is equiva-
lent to the Beard-Jones fault detection filter when there
is no complementary subspace. A numerical example
also shows that this filter is an approximate Beard-
Jones fault detection filter even when complementary
subspace exists. This filter combines the advantages of
the robust single-fault detection filter and Beard-Jones
fault detection filter. :

1 Introduction

Any system under automatic control demands a high
degree of system reliability and this requires a health
monitoring system capable of detecting any system, ac-
tuator and sensor fault as it occurs and identifying the
faulty component. One approach, analytical redun-
dancy, uses the modeled dynamic relationship between
system inputs and measured system outputs to form
a residual process used for detecting and identifying
faults. Nominally, the residual is nonzero only when a
fault has occurred and is zero at other times.

A popular approach to analytical redundancy is the
detection filter which was first introduced by [1] and
refined by [2]. It is also known as the Beard-Jones
fault detection filter. A geometric interpretation and a
spectral approach of this filter are given in [3] and [4],
respectively. Design algorithms have been developed

1This work was sponsored by Air Force Office of Scientific Re-
search, Award No. F49620-97-1-0272 and NASA-Ames Research
Center, Cooperative Agreement NCC2-374, Supplement 19
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[5, 6] which improved detection filter robustness. The
idea of a detection filter is to put the reachable subspace
of each fault into invariant subspaces which do not over-
lap with each other. Then, when a nonzero residual is
detected, a fault can be announced and identified by
projecting the residual onto each of the invariant sub-
spaces. Therefore, multiple faults can be monitored in
one filter.

Another related approach, the unknown input observer
[7], simplifies the detection filter problem by dividing
the faults into a target fault and nuisance fault group
where the nuisance faults are placed into one invariant
subspace. Although only one fault can be detected in
each unknown input observer, additional flexibility in
fault detection filter design for robustness and time-
varying system is obtained by using an approximate
fault detection filter [8, 9, 10, 11, 12].

In this paper, an extension of the optimal stochastic
fault detection filter [11) is presented. The optimal
stochastic fault detection filter, which is an approx-
imate unknown input observer, allows additional ro-
bustness in the fault detection filter design. However,
it can detect only one fault in each filter. In contrast,
the Bearc-Jones fault detection filter can detect multi-
ple faults iu one filter, but is not very robust. From the
problem formulation of the optimal stochastic fault de-
tection filter, it seems natural that the multiple faults
objective may be achieved. This is done by dividing the
residual space of the filter into several subspaces by pro-
jectors and having each subspace sensitive to only one
fault (target fault), but not to other faults (nuisance
faults), in the sense that the transmission from nui-
sance faults to the target residual space is small while
the transmission from target fault is large. In the limit
where the nuisance fault weighting goes to infinity and
in the absence of sensor noise, it is shown that the opti-
mal stochastic multiple-fault detection filter becomes a
Beard-Jones fault detection filter when there is no com-
plementary subspace. Note that the H, bounded fault
detection filter [6] imposed the detection filter struc-
ture constraint while the detection filter structure is
generated from the problem formulation of the opti-
mal stochastic multiple-fault detection filter. Also, &
numerical example shows that this filter is an approxi-




mate Beard-Jones fault detection filter when it is not in
the limit even with the existence of the complementary
subspace.

The problem is formulated in Section 2 and the solution
is derived in Section 3. In Section 4, the filter is derived
for the limiting case when there is no complementary
subspace. In Section 5, a numerical example is given.

2 Problem Formulation

In this section, the fault detection filter problem is for-
mulated. From [1, 3, 4, 8], a linear time-invariant,
(C, A) observable system with g plant, actuator and
sensor faults can be modeled by

q
it =Az+ Bu+ Z Fip; (1a)
i=1

y=Cz+v (1b)

where u is control input, y is measurement and v is
sensor noise. The failure modes u; are vectors that
are unknown and arbitrary functions of time and are
zero when there is no failure. The failure signatures F;
are maps that are known. A failure mode p; models
the time-varying amplitude of a failure while & failure
signature F; models the directional characteristics ofa
failure. Assume the F; are monic so that p; # 0 implies

Fip; #0.

There are two assumptions about system (1) in order
have a well-conditioned fault detection filter. Assump-
tion 2.1 ensures the separation of faults p;,i =1,--- ,¢
[3, 8]. Assumption 2.2 ensures a nonzero residual in
steady state when the target fault occurs [11].

Assumption 2.1. Fy,---, F; are output separable.

. Assumption 2.2. (C, A, F;),i=1,---,q, do not have

transmission zeros at origin.

Assume p;,i=1,---,q, and v are zero mean, white
Gaussian noise with

Elw(t)ps(1)T] = { 3‘5“ =) ::; (2a)
Ep@)u(r)T]|=Vi(t-7) (2b)
and E[x(tO)z(tO)T] = P. A.lSO, ll'hi =1,---,q and v

are uncorrelated with each other and with z(to). For
simplicity, the following notation is made for use later.

pi={m o Bl Bt M ]
B=[F -+ Foa Fp - F]
Qi = Ela:(t)u(t)T)

The objective of the optimal stochastic multiple-fault
detection filter problem is to find a filter gain L for the
linear observer,

i = Ai+ Bu+ L(y - Ci)
and the residual,
r=y-C%t 3)

such that each projected residual H;r is affected es-
sentially only by its target fault u;, and minimally by
its nuisance fault [;, sensor noise v and initial condi-
tion error x(to) — £(to). H; are projectors also used by
the Beard-Jones fault detection filter which map the
reachable subspace of fi; to zero.

I?I,':y—*y , KerI:h:C"fi

where 7; is the minimal (C, A)-unobservability sub-
space of F; with k;=dim7;. A minimal (C,A)-
unobservability subspace [3, 7] implies that there is a
projector H induced from the fault directions such that
(HC, A — LC) has an unobservable subspace for some
filter gain L. The error, e = z — £, can be written as

e(t) = (¢, to)e(to) + /t ‘Q(t, 7) (}g: Fip; —Lv) dr (4)

t=1

subject to
%@(t,to) — (A= LC)B(t to) , Bltorte)=1 (5)

And the residual (3) becomes r = Ce + v.

Now a performance index is needed for deriving the

filter gain L. It seems that the most natural choice

is to have the performance irdex be associated with
the residual (i.e., H;(Ce +v)). However, it is unus-

able from statistical viewpoint since the variance of the

residual generates a §-function due to the sensor noise.

The next choice is for the performance index to be asso-

ciated with the output space Y (i.e., fI.-Ce). However,

a unique solution can not be obtained from minimizing

the performance index associated with the output space .
because the information on the null space of C is not

available. This will become clear in Section 3. There-

fore, the performance index will be associated with the

state space X (i.e., H;e) which means the influence of
fui, v and e(to) on H;e is minimized while the influence

of p; is maximized. The H; associated with fI; is

~

H;:X—X, KerH;=T;, Hi=1-FITR)IT (6)

Note that Beard-Jones fault detection filter also works
on the state space by assigning the eigenstructures. In
Section 4, it will be shown that the projectors (6) will
minimize the performance index in the limit.
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Assumption 2.3. The invariant zero directions asso-
ciated with the invariant zeros of (C, 4, F;) on the left-
half plane are included with the fault direction F; to
produce the minimal (C, A)-unobservability subspace

of Fi, T..

Remark 1. From (3], all invariant zero direc-
tions of (C, A, F;) have to be included in 7; or
the invariant zeros will be part of the eigenvalues
of the filter. From the approach of (8], the invari-
ant zero directions associated with the invariant ze-
ros on the right-half plane and imaginary axis are
automatically included in 7;. From [11, 12], the in-
variant zero directions associated with the invariant
zeros on the left-half plane will also be included in
7T, only if the fault direction F; is modified. -

Define
t
hi(t) = Hi | ®(t,7)Fipidr (7a)
to
t
hi(t) =Hi/ O(t, T)Fifidr (7b)
to

hiv(t) = H; [@(t,to)e(to) - tt Q(ts T)LUdT] (70)

From (4), h; represents the transmission from target
fault to part of the error Hie. fz; represents the trans-
mission from nuisance faults to H;e. h;, represents the
transmission from sensor noise and initial condition er-
ror to H;e. Since the objective is to pick a filter gain L
such that each H;e is sensitive only to its target fault,
but not its nuisance fault, sensor noise and initial con-
dition error, h; and h;, are expected to be small while
h; to be large. This can be formulated as a non-convex
minimization problem,

. /tltr L [S (R + hiohT)
L t;—to v Hh T T

min J = min
L to i=1

-E [g hihf'} } dt

where 4 > 0 and ¢, is the final time. The trace operator
is used because the variance is a matrix.

3 Solution to the Disturbance Attenuation
Problem

By using (2) and (7), the cost J can be written as

ty 9 t T pA.EFT .
1 / tr{ Y |H: / @(t,f)(LVL p BiQFy
t - 1o to to v Y

f=1

J=

F:Q;FT)&(t, 7)Tdr H,; + H;3(t, to)f;‘hb(t, to)TH,-] } dt

To put the optimization problem in a more transparent
context, J is manipulated by adding zero term

1 txt QH.QttP.tQ tT
tl-to/ ’Z»H,),()(t,)_

to i=1

td
&(t, to)Pi(to)®(t, to) ™ /t E(@(t, r)P@(t,r)T)dr]H,-}dt

Then, the problem can be rewritten as

1 iy 1 q t
mlinJ = min Tt /to ;\.r Z [Hi &(t, 1)

i=1 to

(L—yP,CTV YV (LP.CTV )T (t, 7)TdrH;] } dt
. 1 13} 1 q
= min —- /: St (Z H,-Wi(t)H.-) dt (8)

o i=1

subject to

P=AP+P,AT4PCTV"IC Pi+—'9';—F1——I"iQiET )

W; =(A - LO)W,; + W;(A - LC)T
+(L = yPCTV YV (L -yBCTV-HT  (10)

where P;(to) = Po/v and W;(to) = 0. The term ;-2

t1—to

[ Ler[Y°2_ | HiP;(t)H;] dt is dropped because H; is

to v
not being optimalized here but chosen as in (6). See

[11] for extension.

The variational Hamiltonian of the problem is

q
H:tf{z {H:W;H, +K:{(A~LC)W;+ Wi(A-LC)
=1

HL-yPCTV HV(L -4PCTV HT}} (1)

where K;(t) € R"*" is a continuously differentiable
matrix Lagrange multiplier. Note that F;,i =1,--+ ,q,
are independent of L. The first-order necessary con-
ditions imply that the optimal strategy for L and dy-
namics for KC; are

q
%% =5 [-2CWiK 2V (L"—yPCTV1)TK,] =0 (12)
=1

= L= (zq: IC,-)“[Zq: Ki(vP + WICTV- (13)
=1 i=1

= g—;’% =H+K(A-LC)+(A-LC)TK=0 (14)
%

-K;
where Ks(t;) = 0. Note that K; = K7. Although the
optimal filter gain L*, (13) subject to (10), (14) and
(9), requires the solution to a two-point boundary value
problem, it can be computed off-line.

More realistically, the infinite-time case allows a time-
invariant L* where 2¢ algebraic Lyapunov equations
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(10) and (14) (i.e., Wi = K; = 0), coupled by (13), are
to be solved. An alternative is to use a gradient method
to numerically solve

q
lim minJ = mintr (l ZH,-W.'H,-)
L L v <

ty —to—00
1 =1

where W, is the solution to the algebraic (10).

Remark 2. The stability of the filter depends
on the existence of L*. If there is a L* such that
the cost J is at its minimum, A — LC has to be
stable otherwise J will become unbounded. e

Remark 3. If the cost J is associated with
the output space (ie, H in H (11) is replaced
by HC), the Lagrange multiplier K;(t) € R™*"
and therefore L* is not unique from (12). ]

4 Limiting Case

In this section, the limit of the optimal stochas-
tic multiple-fault detection filter is investigated where
V — 0asy — 0 in such a way that 7V =1 — V-1, Note
that V has to go to zero as v — 0 because physically
sensor noise will produce a nonzero transmission. Sim-
ilarly, the variance of the initial condition error Py—0
as v — 0 such that vP; ! — Ilp. The infinite-time L*
(13) will be simplified for the limiting case and com-
pared to Beard-Jones fault detection filter. Assump-
tion 4.1 is used to simplify L* and the following anal-
ysis.

Assumptiou 4.1. There is no complementary sub-
space.

Therefore, 3°9_, 7; spans the state space A’ where T
is the minimal (C, A)-unobservability subspace of F;.
Assume,

(A-LOYLCT; (15)
for i =1,---,q, which will be shown in Theorem 4.6.

Lemmas 4.1 and 4.2 show that K; has similar properties
to H;.

Lemma 4.1. lC.’f'; = 0.
Proof. By multiplying algebraic form of (14) by ¥s;

from the right,
Ki(A — LC)by; + (A — LC)TK;d; =0 (16)

From (15), let ¥y, j=1,--- ,fc;, span 7: such that
(A - LC)‘&.’,‘ = &gj‘ﬁ.‘j. Then, (16) becomes

[&.’jI + (A - LC)T]K:,'f),‘j =0

which implies K;0;; =0 because A—LC has to be sta-
ble. e

Lemma 4.2. If there is no complementary subspace,
Ki(A-LC)=(A-LO),;. .

Proof. From (15), let v;j, j=1,---,k; span T;
such that (A — LC)uvij = 0i;v;. From Lemma 4.1, let
Kivk; = Fijuij if k=1 or 0 if k #4. From Assump-
tion 4.1, any element in the state space X' can be rep-
resented by >i_; Zf‘:l a;jvsj. Then,

q k ki
Ki(A- LC)(Z Z Q;jvij) = Z aijﬂij’_cs'jvij

i=1 j=1 =1
q ki ks _
(A- LC)’Q’(Z Z Q;vi5) = Z aijkijoivij
=1 j=1 =1
imply Ki(4 ~ LC) = (A- LOK:. by

From Lemma 4.2 and algebraic form of (14),
Ki=-[(A- LO)+(A-LO)T|7'H;  (17)

where (A — LC) + (A - LC)T is invertible because A—

LC has to be stable. By substituting (17) into (13),

L*= (2": Hi)—lli Hi(yP+W)ICTV™H (18)

i=1 =1

Lemmas 4.3 and 4.4 are important projector properties
for Lemma 4.5 which will be used to simplify L* (18).

Lemma 4.3. There exists a state transformation T,

My 0O O
[73 ess %]:r 0 '.. 0
0 0 M,
where M;,i =1, ,q, are any invertible k; x k; ma-
trices, such that '
= 0 0 O
rTH1r=[}g‘ g] CITH,T=|0 H ©
o 0 0 0
. gr=|92 9
e[ 4]

Proof. Since H; (6) has a null space y

0
KeH;=[ T 7;]=r[m]
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where M; is & block diagonal matrix with diagonal ma-
trix elements My, -+ , My, then

0 | _ T 0 |_
le[Ml]_o = T HII‘[MI]—O

Since M; is not zero by definition and I'TH,T is sym-

metric,
H 0
T _ 1
r'm|rlr= [ 0 0 ]
Similarly, i = 2,--- ,q, can be proved. -

Lemma 4.4.

q .
§ : -lzr _ Hi y V=17
Hi(k:ka) = { 0 i#]

!

Proof. Fori=1land j=2,

q
FTHl(Z Hi) 'HoT'
k=1

q
= (THD)(S TTHI) (T HT)
k=1 ’
= -1

a o™ 00 0 0 0

—1 3

[5el)e s el L85
o o0 H

0 0 O
= [ ‘g g ] 0 H, 0}|=0
0 0 O
Therefore, Hi(3 11 H;i)~!H,=0 and similarly it can
be shown for all cases. P

Lemma 4.5. If there is no complementzciy subspace,
H,'W,‘ = 0.

Proof. By multiplying algebraic form of (10) by H;
from left and right, substituting L with (18) and using
Lemma 4.4,

Hi(AW; + W,AT - W,CTVTICW,)H; =0

where A;=A-P,CTV~!C. Since A, is stable {11, 12],
the solution is either W;=0 or ImW; CKerH;. There-
fore H,'W;' =0. [ ]

By using Lemma 4.5, L* (18) becomes
q q
= H)QovEP)CTVTE (19)
i=1 i=1
Theorem 4.6 shows that L* (19) is consistent with the
assumption (15) in the limit and therefore the limit-

ing optimal stochastic multiple-fault detection filter is
equivalent to the Beard-Jones fault detection filter.
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Theorem 4.6. In the limit, fori=1,---,q,
(A-LOT.CT (20)
where L = (L0, H:)"Y(Ti, HiR)CTV!

v

Proof. Instead of P; (9), using its inverse II; 2 P!
is a better way to discuss the limiting properties be-
cause II; has a null space 7; in the limit {11, 12]. Then,
the filter gain becomes

L= (Z H;)’l(i HIO HoTv-! (21)

=1 i=1

where
0 =IL;A + ATIL; + ni(-}FiQ.-F.T - F.Q:FNIL
~-CcTv-ic (22)

Note that the infinite part of 1'[‘-'1 is annihilated by
the projector H; because Ker H; = Ker ;. Fori=1,
multiply (20) by II; from the left,

H(A—LC)Ti =0

because 7 is in the null space of Il in the limit. By

. substituting L with (21),

q q
=STLAT - (Y H)(Y HI HCTV-1CT =0

i=1 i=1

q
STLAT; - () H) ' Hell; 'CTVICTi =0

i=1

because Ip(3°7_, Hi)~'Hjz2 = 0 which can be shown
similarly to Lemma 4.4.

=T,AT, - CTVICTi =0

which is true by multiplying (22) where i =2 by Ty
from the right. Similarly, it can be shown

IL(A-LC)T, =0

for i = 3,--.- ,q. Since Kerllo N ---NKerlly = T (11,
12},
(A-LCYLCT

and fori = 2,--- ,q, it can be shown similarly. e

Remark 4. Lemma 4.5 implies that the pro-
jectors Hj, (6), minimize the cost (8). Therefore,
(6) are the optimal projectors in the limit. e

Remark 5. (19) shows a limiting property of the
optimal stochastic multiple-fault detection filter. How-
ever, the optimal filter gain can not be derived when

s




~ is zero because the filter gain depends on the in-
verse of V which is zero. Therefore, only an ap-
proximate Beard-Jones fault detection filter can be
derived when 4 is small. However, when a full-
order Beard-Jones fault detection filter reduces to
a few reduced-order filters, these reduced-order fil-
ters can be recovered by taking the optimal stochas-
tic single-fault detection filter to the limit [12]. e

Remark 6. By combining Lemma 4.5 and H; P;(t1)H;:
= 0 (11, 12], the optimal stochastic multiple-fault de-
tection filter satisfies a disturbance attenuation prob-
lem,

i ot {B [0, T ] et _
L By (B[S0 hehT]}dt

ti—to Jio

in the limit. e

5 Example

In this section, a numerical example from [4] shows that
the minimization problem produces a fault detection
filter when there is a complementary subspace. The

system matrices are
0 5 1
1],F1= 1 ,F2= -0.5
1 1 05

034 0
A= 123,C=[0
025

The power spectral densities are chosenas @ = Q2 =1

[

" and V = 10~% I. The disturbance attenuation bound

« is 1076, The infinite-time minimization problem is
solved numerically by using gradient method and the
frequency response of the filter shows that the two
faults are isolated. '

6 Conclusion

The optimal stochastic multiple-fault detection filter
is a generalization from the single-fault filter. The
residual space of the filter is divided into several sub-
spaces and each subspace is sensitive to only its target
fault, but not the nuisance faults, in the sense that the
transmission from nuisance faults to the target residual
space is small while the transmission from target fault
is large. In the limit as the nuisance fault weighting
goes to infinity and in the absence of sensor noise and
a complementary subspace, this filter is equivalent to a
Beard-Jones fault detection filter which puts each fault
into an unobservable subspace. This filter has the ad-
vantages of the unknown input observer in that it can
be designed for robustness and the advantages of the
Beard-Jones fault detection filter by being capable of
detecting multiple faults in one filter. Although there

4970

is additional computation to determine the filter gain,
this can be done off-line so that implementation is as
straightforward as the Beard-Jones fault detection fil-
ter.
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ABSTRACT

In this paper, we introduce the decentralized fault detection filter, a structure that results from merging decentralized esti-
mation theory with the game theoretic fault detection filter. A decentralized approach may be the ideal way to health monitor
large-scale systems, since it decomposes the problem down into (potentially smaller) “local” problems and then blends the
“jocal” results into a “global” result that describes the health of the entire system. The benefits of such an approach include
added fault tolerance and easy scalability. An example given at the end of the paper demonstrates the use of this filter for a
platoon of cars proposed for advanced vehicle control systems.

Introduction

Observers play a central role in an important class of techniques for fault detection aqd 'id'entiﬁcation (FDI); Since failures act as
nexpected inputs, they will bias the error residuals of any observex; designed about the nominal systém. Moreover, because of théir
closed-loop nature, observers are able to maintain nonzero residuals for indefinite periods of time after the occurence of a failure!, and
they possess reduced sensitivity to model mismatch, nonlinearities, and exogenous disturbances inherent to feedback systems.

There are two types of observers currently used for FDI purposes. The first is known as the Beard-Jones Fault Detection Filter
(White and Speyer, 1987; Massoumnia, 1986; Douglas, 1993). This filter is a variation of the Luenberger Observer in which‘nonovcr-
lapping invariant subspaces have been built around the reachable subspaces of the failures modelled in the system. The influence of
any one of these failures is restricted to its own particular subspace, which allows for simultaneous detection and identification. That is,
projecting the error residual onto each of these invariant subspaces one-by-one, a failure is detected when the projection is nonzero and
identified by the subspace corresponding the nonzero projection.

The second type of FDI observer is known as the unknown input observer. In this observer, the set of modelled faults is divided |

into two groups: the faults to be detected and the faults that are to be ignored. The former is made distinguishable from the latter

*This work was § by NASA-Ames Research Center Cooperative Agreement No. NCC 2-374, supplement 19, Air Force Office of Scientific Research Grant
F49620-97-1-0272, California Department of Transportation Agreement No. 65H 978, MOU 126
1A distinct advantage over open-loop FDI methods (White and Speyer, 1987)

’
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by constructing an output through which the latter set is unobservable. Detection is then achieved when this output is nonzero and
identification is trivial because we are only trying to detect one set in the possible preserice of the othér. The unknown input observer is
clearly less capable than the Beard-Jones filter, but its relatively simple structure allows for easy approximation by optimization methods
(Ding and Frank, 1989; Chung and Speyer, 1998). ‘

As both of these approaches have become more refined, applications have begun to be seen in the literature for systems as varied as
jetengines (fatton and Chen, 1992), missile guidance (Bowman and Speyer, 1987), nuclear reactors (Patton et al., 1991), and automated
highways (Douglas et al., 1995, 1996). With the advent of appliéaltions. however, new issues related to implementation have come to the
forefront. In this paper, we will look at some of the challenges inherent to detecting faults in large-scale systems. For such systems, a
decentralized fault detection filter may be the logical approach to the problem.

The decentralized fault detection filter is the result of combining the game theoretic fault detection filter of Chung and Speyer (1998)
with the decentralized filtering algorithm introduced by Speyer (1979) and extended by Willsky et al. (1982). It approximates the actions
of an unknown input observer and is forrr.wd by combining the estimates of several “Jocal” estimators (each driven by independent
measurement sets). For large-scale systems, it simplifies the health montoring problem by decomposing it down into a collection of
smaller problems. For other systems like a platoon of cars (Douglas et al., 1996; Wolfe et al., 1996) or a formation of airplanes, its
decentralizedstructure refiects the actual physical structure of the system. And further, it introduces scaiability for circumstances suéh
as when a car joins the platoon or when an airplane drops out of formation for repairs. Finally, the decentralize fault detection filter has

built in fault tolerance in that sensors can be checked and validated prior to their measurements being blended into the global estimate

(Kerr, 1985).

Decentralized Estimation Theory and its Application to FDI

The General Solution

In this section we will review the basic results of decentralized estimation theory. A detailed examination of this theory is givenin -

Chung and Speyer (1995).

Consider the followihg system driven by process disturbances w and sensor noise v,

%= Ax+ Bw, x(O),xE X", (¢))
y=Cx+v, y€R" 2
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It is desired to derive an estimate of x. The standard approach is 2 full-order observer,
E=Ai+L(y-C%), #0)=0, . 3)

which we will refer to as a centralized estimator. An alternative to this method is to derive the estimate with a decentralized estimator.

In the decentralized approach, £ is found by combining estimates based upon “local” models,

H=pid+Bw,  He®gY, (j=1..N), @)

Y=Exd+v, ye®™, (i=1.N). Q)

Together these local models provide an alternate representation of the original system, which is referred to as the “global” system for

purposes of clarification. The vector x is likewise called the “global” state. The number of lbcal systems N is bounded above by the
number of measurements in the system, ie. N <m.

The global/local decomposition is really of only secondary importance. As Chung and Speyer (1995) argue, there are no real

restnctxons on how one forms the global and local models. The real key to the decentrallzcd estimation algorithm is the relationship

between the global set of measuremcms y and the N local sets, y/. The two basic assumptions are that the local sets are s1mp1y segments

of the global set,

and that the local sets can be described in terms of both the local state and the global state. In other words, y can be given by (5) or by
¥y =Cix+v, (j=1...N). @)

Equations 2, 6, and 7 imply that

Cl

3 Copyright © 1999 by ASME




and that

The decentralized estimation algorithm falls out when we attempt to estimate the global state by first generating estimates of the

local systems (4) using the local measurement sets y/ and the local models Al:
P =Aig + U -Ei),  #)=0, (j=1.N). )
The global state estimate, £, is then found via

=

(fof + hf), | (10).

M=

<.
1]

where h/ is a measurement-dependent variable propagated by
i = ohl + (@G - GI -GN, K (0)=0. ‘ (11)
The constituent matrices are defined as

N
®:=A- Y GLUC,
j=1
@ :=A/-LEL.

The G/ matrices are “blending matrices”. Later, we will suggest a method for determining these matrices. In Chung and Speyer (1995),

it was found that in order to get the same estimate using either the decentralized or standard centralized algorithms, the local and global

gains had to be related via,
L'o-.-0
| vil© L2--- 0
L=[G"..¢"}{. .. .| : (12)
0 0. LN

In general, however, this condition can not be met because of an insufficient number of equations required to solve for the unknowns.
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There is, however, one general class of estimator for which (12) is satified almost automatically. This class is comprised of estimators
which take their gains from Riccati solutions, i.e. Kalman Filters (Speyer, 1979; Willsky et al., 1982) or H* filters (Jang and Speyer,

1994). In this case, the local gains are found from
L = PI(ENT (V)7 (13)
where, in the case of the Kalman Filter, the matrix, P/ is the solution of the Riccati Equation:

Pi = AJPi + PI(AY)T + BIWI(B/)T — PI(ES)T (V)1 EIP/,

Pi(0)=Pi.

<

The matrices, V/ and W/, are weightings which are taken to be the power spectral densities of the local disturbances, v/ and w/, which A

drive the local systems (4,5). For the Kalman Filter it is assumed that v/ and w/ are white, Gaussian signals. The initial condition Pb’ is

chosen by the analyst based upon his knowledge of the system. In the global system, the global gain is
L=PCTV,

where

v=|. . .| (14)

is restricted to a block diagonal form comprised of the local weightings V. The matrix P is the soluticn to the global Riccati Equation,
P=AP+PAT +BWBT - PCTYCP,  P(0)=PFo.
The blending matrix solution is then,

G =pHT(P)  j=1,...,N, (15)
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where §/ is any matrix such that
ci=El§. (16)

One can, in fact, always take S/ = (E/)'C/ where (E7)! is the pseudo-inverse of E/ (Willsky et al., 1982). Note that the solutions for G/
will always exist for Riccati-based observers so long as P/ is invertible or, equivalently, positive-definite. This will always be the case if

the triples, (C/,A/, BJ), are controllable and observable for each of the local systems.

Implications for Detection Filters

The analysis of the previous section implies that we will be able to form a decentralized fault detection filter in the general case only
if we are able to find a Riccati-based observer which is equivalent to a Beard-Jones Filter or unknown input observer. The most direct
way to achieve this is to find a lincar-quadrafic optimization problem which is equivalent to the fault detection and identification problem. -
This is an analog of the famous inverse optimal control problem first posed by Kalman (1964). In Chung and Speyer ( 1§98), however, it
is shown that the Beard-Jones Filter gains do not correspond with those derived from linear-quadratic problems. An indirect way to get
a Riccati-based observer is to pose a linear-quadratice optimization problem which closely mimics the fault detection problem. Such a

problem was posed and solved in Chung and Speyer (1998), and we will review the solution found there in the next section.

The Approximate Fault Detection and Identification Problem
Problem Formulation

Consider the system given by (1,2) with the further assumption that the state matrices have sufficient smoothness to guarantee the
existence of derivatives various order. Beard (1971) showed that failures in the sensors and actuators, and unexpected changes in the

plant dynamics can be modeled as additive signals,
*=Ax+Bw+ Fypy + -+ Fglig. 17)

Let n be the dimension of the state-space. The n X p; matrix F, i = 1---q, is called a failure map and represents the directional
characteristics of the ith fault. The p; x 1 vector y; is the failure signal and represents the time dependence of the failure. It will always
be assumed that each F; is monic, i.c. Fip; # O for g; # 0. See (Douglas, 1993; Chung and Speyer, 1998) for further details on how to
model failures. Throughout this paper, we will refer to p; as the “target fault” and the other faults g;, j =2---g, as the “nuisance faults”.
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Without loss of generality, we can represent the entire set of nuisance faults (and, if desired, the disturbance w) with a single map F; and

vector fla:
i=Ax+ A + .

Suppose that it is desired to detect the occurrence of the failure, 1, in spite of the measurement noise, v, and the possible presence

of the nuisance faults, jt2. The Beard-Jones Filter solves this problem by picking the gain to a standard Luenberger Observer,
2=Ai+L(y—-C3), (18)

so that the reachable subspaces of gy and p; are in separate and nonintersecting invariant subspaces. Thus, with a properly chosen

projector H we can project the filter residual, (y — C£), onto the orthogonal complement of the invariant subspace containing pi2 and get

a signal,
z=H(y-C%), - (19)
such that
z=0 when gy = 0 and p is arbitrary. (20)
To be useful for FDI, z must also be such that
z#0 when gy #0. @n

If we restrict ourselves to time-invariant systems, (21) will be equivalent to requiring the transfer function matrix between p1(s) and z(s)?

to be lefr-invertible. Left-invertibility, however, is a severe restriction, and it has no analog for the general time-varying systems that we |
want to consider here. Previous researchers (Douglas, 1993; Massoumnia et al., 1989) have, in fact, only required that the mapping from
pi(2) to z(2) be input observable, i.c. z # 0 for any y, that is a step input. It is then argued (Massoumnia et al., 1989) that with input

observability z will be nonzero for “almost any” p, since j is unlikely to remain in the kernal of the mapping to z for all time.

2y, (s) and (s) are the LaPlace Transforms of the time-domain signals 1 () and 2(s).
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We formulate the approximate detection filter design problem by requiring input observability and relaxing the requirement for strict

blocking that is implied by (20). We, instead, only require that the transmission of the nuisance fault be bounded above by a pre-set

level,y > O:

2 .
8 22
Tl =Y 2

Equation 22 is identical to the disturbance attenuation problem from robust control theory. We refer to the solution to the approximate

detection filter problem as the game theoretic fault detection filter.
We complete our formulation of the disturbance attenuation problem for fault detection by constructing the projector H that deter-

mines the failure signal z. For time-invariant systems, this projector is constructed to map the reachable subspace of y; to zero (Beard,

1971; Douglas, 1993), i.e.

H= l—cﬁ'[(cﬁ‘)rcﬁ‘]_l (ch)T, ‘ 23)
where

F=[abf, ..., AP f,]. 4

The vector f;, i=1--- pa, istheith column of F», and the integer f; is the smallest natural number such that CAPi f; # 0. The time-varying

extension of this result is
T -1 T
H=1-CF(@)[(CF() cEw)]” (cF®)". 25)
The columns of the matrix,
P =[s00), .., 6320 ) (26)
are constructed with the Goh Transformation (Chung and Speyer, 1998):

bi(e) = filt), | @7
bl(r) = AW ) - b (28)
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In the time-varying case, B; is the smallest integer for which the iteration above leads to a vector, b?" (2), such that C(t)b?‘ () #0 for
all ¢ € [to,11] It will be assumed that A(¢),C (¢), and Fy(¢) are such that B; exists. Since the state-space has dimension n, B; is such that
0<Bi<n—-1

We are now ready to discuss the conditions under which the solution to (22) will also generate an input observable mapping from
{1 to z. The key requirement is that the system be output separable. That s, Fy and F> must be linearly independent and remain so when

mapped to the output space by C and A. For time-invariant systems, the test for output separability is
rank [CAS fi, ..., CA1 f,, CAPLfy, ..., CAPR £ ] = pi + 2. (29)

As in (24), f; is the ith column of F3, and P; is the the smallest integer such that CAP! f; # 0. Similarly, f; is the jth column of Fi, and §;

is the smallest integer such that A fj #0. The integer sum, p; + p2, is the total number of columns in F| and F,.

For time-varying systems, the output éeparability test becomes
rank [C(t)l';?‘ ), ..., C(t)l';f,';' ), C(t)b?‘(t), ceey C(t)bfzg2 (t)] =p1+p2, VtE[to,n], (30)

where the vectors, b?’ and B?/ , are found from the iteration defined by (27) and (28). The initial vector, 13}, is set equal to the jth column
of Fi, and b} is initialized as the ith column of F,.
The fol.owing proposition given in Chung and Speyer (1998), connects output separability to input observability and shows the

imporrz.ice of the monicity assumption:

Theorem 1 Suppose that a given filter satisfies (22) and generates the failure signal, z, given by (19). If F, and F; are output separable

and F, is monic, then the mapping, p1(t) v+ z(t), is input observable.

A Game Theoretic Solution
We now turn our attention to the disturbance attenuation problem implied by (22). We begin by defining a disturbance attenuation

function (Rhee and Speyer, 1991),

o IHC(x — £)lIdt

Dy = , . (31)
10 [l + 1 e+ (o) = Sl
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Dgy is simply a ratio of the outputs over the disturbances . Equation 31 is patterned roughly after (22). We have added the sensor noise,
v, and the initial error, x(to) — %o, to the set of disturbance signals to inject tradeoffs for noise rejection and settling time into the problem.
M,V,Q, and P, are weighting matriées. Note that we do not include the target fault g, at this stage of the design problem, since we are
now focusing on nuisance blocking. Our only concern with g is that it be visible at the output, which is what Proposition 1 guarantees.

The disturbance attenuation problem is to find the estimate # so that for all o, v € La[t1,12), and x(t0) € R,
Daf <y

The positive real number ¥ is called the disturbance attenuation bound. (C,A) will always be assumed to be an observable pair.

To solve this problem, we convert (31) into a cost function,

J= f“: ' [IIH¢(x—£)_Hé—v(llﬂzlli,_l +|ly—CxI|2_|)]dt— l1x(t0) — %ollZ,» 32)

where we have used (2) to rewrite the measurement noise term. Note that we have also rewritten the initial error weighting, defining

Iy := ¥~ ' Po. The disturbance attenuation problem is then solved via the differential game,

minmaxmaxmaxJ < 0, (33) '
£y B x(n)
subject to
x=Ax+ B, (34)
y=Cx+w.

The solution to this problem (Chung and Speyer, 1998) turns out to be a Luenberger Observer,
F=AR+ITICTV (= CR),  %(t0) = %o, (35)
whose gain is taken from the solution to a Riccati Equation,

~I1=ATII+TIA+ %anMF{n+ CT(HQH - ~')C I(z0) = Io. (36)
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In many cases, it is desired to extend finite-time solutions of game theoretic problems to the steady-state condition. Whenever it is

possible to find such a solution, the optimal estimator will be given by (35) with I being the solution of the algebraic Riccati Equation,
0=ATTI+IIA+ %szF{n +CT(HQH -y ™')C. (37

However, unlike linear quadratic optimal control problems, there are no conditions which guarantee the existence of a unique, nonnega-

tive definite, stabilizing solution to the steady-state Riccati Equation, except in the special case where A is asymptotically stable (Green

** and Limebeer, 1995).

The Decentralized Fault Detection Filter .

Given the results of the previous two sections, we now propose a decentralized fault detection filtering algorithm. The essential idea
is to implement the Riccati-based game theoretic fault detection filter as a decentralized estimator. An overview of the procedure is as

follows:

1. Identify the sensors and actuators which must be monitored at the global level, i.e. define the target faults for the global filter.

2. Identify the faults which should be included in the global nﬁisancc set. The remaining faults should be monitored at the ld(:‘al levels.

3. Derive global and local models for the system including failure ma;:s. Chung and Speyer (1998) contains a brief discussion about this
process. We will demonstrate one method in which the loca’ :nodels are derived from the gldbal model via a minimum realization.

4. Design game theoretic fault detection filters for the local and global systems. Solve the corresponding Riccati equations and store
the solutions for later use.

5. Determine the blending solutions G/ from Equation 15.

6. Propagate the local estimates £/ and vectors &/ and then use the decentralized estimation algorithm (10) to derive a global estimate,
£.

7. Determine the global failure signal from (y — C£) where y is the total measurement set, C is the global measurement matrix, and £

is the global fault detection filter estimate just derived.

We will now apply these steps in an example.
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00" | 00

Car #1 Car #2

Figure 1. Two-Car Platoon with Range Sensor

Range Sensor Fault Detection in a Platoon of Cars

Problem Statement

We will now examine the utility of the decentralized approach to FDI by working through an example. The problem that we will _
look at involves the detection of failures w;thin a system of two cars traveling as a platoon (See Figure 1). The cars are controlled to
maintain a uniform speed and constant separation. The platoon is the central component of automated highway schemes in which groups
of cars line up single file and travel as a unit. The objective is to eliminate the backup caused by the interaction of individual vehicles
maneuvering across highway lanes (Douglas et al., 1995, 1996). The viability of the platooning scheme,.however, will depend on many

factors, not the least of which are reliability and safety.

The FDI schemes that we have examined to this point are capable of monitoring individual cars, but may not be ideal for monitoring
elements that deal with the interactions between cars. For example, to maintain uniform spe~: roughout the platoon and to keep the
spacing between the cars constant, additional sensors will be needed to measure the relative speed and the relative distance, or “range”,
between the cars. In order to detect a failure in the range sensor using analytical redundancy, however, it is necessary to have a dynamical
relationship between the range sensor and other sensors on the vehicles. Range, however, involves thé dynamics of both of the cars and '

so would require a higher-order model for its detection filter.

While this is not necessarily prohibitive, it does not make use of the many different state estimates that are already being propagated
throughout the platoon. The sensors on each of the cars, for instance, will be monitored by detection filters, and it is more than likely
that a state estimate would also be generated by the vehicles’ control ioops. Given these pre-existing estimates, it seems logical to make

use of the decentralized estimation algorithm to carry out range sensor fault detection.
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System Dynamics and Failure Modeling

Our example starts with the car model used in Douglas et al. (1995). In this model, the nonlinear, six degree-of-freedom dynamics
of an representative automobile are linearized about a straight, level path at a speed of 25 meters/sec (roughly 56 miles per hour).
The linearized equations are found to decouple nicely into latitudinal and longitudinal dynamics, much like an airplane. ‘Moreover,
the linearized equations can be further reduced by eliminating “fast modes” and actuator states. For simplicity, we will onlyv use the

longitudinal dynamics which we represent as

X = ALx,

y=Clx,

where the superscript “L” stands for “longitudinal.” The vehicle states are

( mg } engine air mass (kg)

engine speed (rad/sec)

long. velocity (m/sec)

\ vertical velocity (m/sec) ' (38)
vertical position (m) :

pitch rate (rad/sec)

) pitch (rad)

!

i

~
oaaFTE

and are propagated by the state matrix,

—0.087694 0.0038094 —0.12133 —0.010701  3.9941 42.617 1.2879
0032194 —1.6765 57.123  7.2346 26.27 —~665.78 496.6
4.6169¢—05 —0.021736 —22.56 0.11478 —0.00095051 7.7651e — 05 —4.5754¢ 05
~ Al=| —0075512 77689 -301.66 -38.647 —137.16 3612 —2816.7 . 39)
~0.096212 -0.073026 2.498 0.2312 0.89067 —19.054 9.0737
—0.94943 —0.26102 —0.20407 —0.067025 —0.41229 -2.4689 0.16425
—027186 092418 0.12024 0.19024 —0.010912 ~1.302 —1.434

The measurements are

((mg ) engine air mass (kg)

w, | engine speed (rad/sed)

v, | long. acceleration (m/sec?)

v, » heave acceleration (m/sec?) (40)
q | pitch rate (rad/sec)

©y | front symmetric wheel speed (rad/sec)

L ®, ) rear symmetric wheel speed (rad/sec)

I
H
A
<.
~

with the corresponding measurement matrix,
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1 0 0 0 0 o . 0 ]
0o 1 0 0 0 o v 0
0 00713 —0.8177 0.5934 6.7786 16.8068 1.5162
ch=|0-00020 0.0221 —3.5646 —40.4210 —9.0765 —0.8141 | . @)
0o 0 0 0 0 0 1 .
0 0  7.1220 —4.5806 —51.9152 58.8718 5.1944
0 0.0888 59738 —3.5782 —40.5542 —56.4109 —4.9773

The rear and front symmetric wheel speeds are states that were eliminated when the fast modes were factored out of the linearized

system.

In order to build a dctec;ion filter for the range sensor, we need to use (38-41) to build state space models for the platoon,

n=An+Fm+ P,

y=Cn,
and the two individual cars,

2! =Al +Flpl+ B,
y' =E'n!,
0% =AM+ FL + PR,

¥ = EqP.

We will build up our models with the following steps:

1. Using (38-41), we will derive the global state matrices, A and C.
2. Using the modelling techniques described in Douglas (1993) and Chung and Speyer (1998), we will determine the failure maps, F;.

3. We will then obtain the local state matrices, Al Ei, and F!, from the minimum realization of the triples (C',A,F2) and (C%,A, F2). N

Our general strategy is to derive the global equation first and then get the local equations from decompositions based upon observability

~and controllability. While this is by no means the only way to obtain the global and local representations of a system, it is a logical

method that can be applied to any problem.

The obvious way the get the global matrices, A and C, is to form block diagonal composite matrices with AL and C* repeated on the

diagonal, i.e.
14 Copyright © 1999 by ASME




i

A,z[AL o}, -

cto
0 AL octl:

This, however, is not sufficient, since there is no way to describe the range, R, between the two vehicles with the given states, (38).

Range is the relative distance between the cars,
R=x'-2,

where ¥ is the longitudinal displacement of car i. Displacement, however, is not a state of the vehicle (38). We must, therefore, add a

range state to the platoon dynamics, using the equation, .
R=vl-v2

The end result is that the platoon will be a fifteen-state system,

engine air mass (kg) - Cari#t1

(Dl engine speed (rad/sec) - Car#1
vl | long. velocity (m/sec) - Car#l

v; vertical velocity (m/sec) - Car#l
vertical position (m) - Car#l

q' | pitch rate (rad/sec) - Car#l

6! | pitch (rad) - Cari#l

engine air mass (kg) - Car#2

w? | engine speed (rad/sec) - Car#2
v2 | long. velocity (m/sec) - Car#2
v2 | vertical velocity (m/sec) - Car#2
22 | vertical position (m) - Car#2
¢

92

R

=3
Il
nsn

pitch rate (rad/sec) - Car#2
pitch (rad) - Cari2
Range (m).

The corresponding state matrix is

AL 0 ,
A=|0 AL {, 42)
E, —E;

E;=[0010000].
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The measurement matrix is

ct o [

1
c=|,[C0| = C], 43)
01

where C! and C? can be inferred from (43). Finally, the local measurement sets are

m} ) engine air mass (kg)- Car#l

w! | engine speed (rad/sed)- Cari#l

v, | long. acceleration (m/sec?)- Car#l

y' ={ Vi 3 heave acceleration (m/sec?)- Cari#l

q' | pitch rate (rad/sec)- Car#1

@ | front symmetric wheel speed (rad/sec) - Car#1
L @\ ) rear symmetric wheel speed (rad/sec) - Car#1.

/

and

-( m% Y engine air mass (kg)- Car#2

0? | engine speed (rad/sed)- Car#2

"’3 long. acceleration (m/sec?)- Car#2

v? | heave acceleration (m/sec?)- Car#2

7 pitch rate (rad/sec)- Car#2 _

Ezr front symmetric wheel speed (rad/sec) - Car#2
@2 | rear symmetric wheel speed (rad/sec) - Car#2
R ] range (rad/sec).

Our ultimate objective is to design a filter which will detect a range sensor fault in the presence of potential failures in the other
sensors. In an actual health monitoring system, we Would design the global filter to block out all of the nuisance faults that are output
separable from the range sensor fault and then rely upon the loca! filters to monitor the remaining faults. Given the size of our exam-
ple, however, the full analysis required to do a detailed design \n;ould clutter our presentation. We will, therefore, limit ourselves to
constructing only one locall filter and will choose simple nuisance sets at both the global and local levels.

For this example, we choose to monitor the front symmetric wheel speed sensor at the local level. The nuisance set is then chosen to
be the engine air mass sensor and the heave accelerometer. At the global level, the range sensor has already been designated as the target -
fault. We, therefore, complete the problem definition by choosing the engine speed sensor and longitudinal accelerometer as the global
nuisance sét. There is no particular significance attached to any of our choices for the nuisance and target sets, aside from the choice of
the range sensor as the global target fault.
| Following standard modelling techniques Douglas (1993); Chung and Speyer (1998), we construct the two engine speed sensor
failure maps Fi,) and Fy2. To save space we do not list these matrices out explicitly. The interested reader can refer to (Chung, 1997).
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To complete the problem we also need to construct maps for the accelerometer failures, F,;} and F2, and the range sensor, Fg. For the

local filters, failure maps need to be constructed for the airmass sensors,

Fpi and Fa, heave accelerometers, F;; and Fj2, and front wheel

speed sensors, mef and Fa} . A quick application of (29) will show that all of our failure sets are output separable.
We are now in position to generate the local state equations. The local dynamics for car #1 come from the minimum realization of

(c',A, [F,,, 1 F‘-,:x ] ). The corresponding matrices are

[ —0.087694 0.0038094 —0.12133 —0.010701  3.9941 42617 . 12879
0.032194  1.6765 57.123  7.2346 26.27 —665.78 496.6
4.6169 —05 —0.021736 —22.56 0.11478 —0.00095051 7.7651e— 05 —4.5754¢ —05
Al=| —0075512 7.7689 -301.66 -38.647 —137.16 3612 -28167 |,
—0.096212 —0.073026 2498 02312  0.89067  -—19.054 9.0737
_0.04943 —026102 —0.20407 —0.067025 —0.41229 ~ —2.4689  0.16425
| —027186 092418 0.12024 019024 -0010912  -1.302 -1.434
0 0 1 0 0 0 0 1
—0.00039519 0.18605 0 —0.98251 0.008136 —0.00066466 0.00039164
0.0043561 —0.014182 0 —0.090334 02118  11.266 1431 '
E'= | 0.00015951 —0.00067636 0 —0.0048006 —4.0642 —41.318  —2.4264 |,
—0.00014266 —0.97872 0 —0.18537 0.0016064 0.024547 —0.084511
~0.00030256 0.0016942 O 0.0069288 1.4478  —34.102  -T71.377
| 0.0009564 —0.0038718 0 —0.019192 21041  -55207  42.987
[0 —0.12133 ] [ 7.9031 —1.6879]
0 57.1230 ~0.0007 —0.0213
1 ~22.5605 0 0
Fiy = |0 —301.6586 | , F}; = | —0.0048 —0.0057
0 2.4980 —0.1760 —0.7911
0 -0.2041 ~0.0068 —7.4136
[0 0.12024 | | ~0.0003 —2.1388 |

The model for Car #2 is similarly found by obtaining the minimum realization of (C2,4,

[‘Fmg F;,; ] ). The corresponding matrices are

[ —0.26387 —0.27372 0.97419 —0.040683 0 0 0 0
0.28256 0.2607 0.042752 - 1.0237 0 0 0 0
—12.546 —12.054 —1.4539 —0.79488 —0.0025104 0.00016431 0.00013564 0.034164
A2= -28.279 —27.514 -2.1059 —3.0468  0.0048048 8.1292 6.7111  —0.065389
195.07 193.92 -2.3745 38.898 —0.19848 —152.87 ~126.21 2.7044 !
38593 4.508 03571 051933 —4.1413¢-06 -21.332 - 18.419  5.635% —05
—4.0915 —4.8456 —0.37617 —0.54711 3.0926e—05  22.827 17.824  —0.00042087
| —2654.8 —2639.1 32315 —529.37 -304.44 2080.5 1717.5 -57.774
0 0 0 0 0.99731 0 0 0.073283 1
0 0 0 0 0.073283 0 0 -0.99731
-12.008 —11.76 -0.54089 —1.6668  0.0052249 5.2402 4.3261 —0.071106
E= 50034 69535 053293  0.79148 -0.00014384 -—31.362 —25.727 0.0019575
—-0.011223 0.011321 —0.73157 -0.68157 0 -0.0019527 —0.0016121 0 ’
—43291 -39.922 -8.6999 1.9601 0 —-40.162  -33.156 0
40011 39.775 -—0.48704 7.9783 0.0065064 —31.356 —25.886 —0.088546
| 0.69369 —0.71973 —0.014645 —0.0075736 0 —-0.017553 -0.014491 0 ]

17
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[0 0 0 0
0 0 0 0
0 0 0 0
) 0 0 . | o 0
Fu:= 109973 00002 | Fi=1 o 0
0 0 ~5.0327 —4.9282
0 0 6.0961 —6.2254
[ 0.0733 —307.8575 | |0 o |

With all of these system matrices in place, we can now form the residual projectors H needed generate the failure signal, z. In the

global filter, we define
F=[Fy Fy Fg Fa].
In the local filters, we define
F=[FFy]  i=12
The projectors A and H i are then found by applying (23). Again, we do not show either of these matrices explicitly to save s.pace.

Decentralized Fault Detection Filter Design

We will first design filters for the local systems. As with all Riccati-based filters, the central step in the process is in obtaining a
solution to the appropriate Riccati Equation. For simplicity, we will use the steady-state version. Typically, one iteratz>-on the design
by trying various combinations of weightings until a Riccati solution is found which leads to a filter that gives the best tradeoff between _

target fault transmission and nuisance fault attenuation. For this example, it was found that

M'=10x I, vi=diag[11101111],

Q'=n, y=0.18

leads to the filter for Car #1 depicted in Figure 2. The minimum separation over frequency is only 35 dB, but the filter has particularly
good separation in the low frequency range. For Car #2, the same weightings, adjusted for the different dimensions of the Car #2

dynamics,
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Singular Value Piot of Local Game Theoretic Filter #1 '
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Figure 2. Platoon Example - Signal Transmission in the Local Detection Filter on Car # 1 (accelerometer fault transmission shown with solid line, nuisance
fault transmission shown with dashed line)

M? = 10x s, V2 =diag[111011111],

Q*=1Is, y=0.18,

leaa 10 a filter with the performance depicted in Figure 3. Finally, for the global system, a fault detection filter for range sensor health

monitoring in the platoon is found by solving the corresponding Riccati Equation with the weightings:

Wl =1y, Q=1n,

M=100x1Ig, y=0.18.

The resulting filter has the properties depicted in Figure 4. The decentralized implementation that we proposed in the previous section
should also exhibit this level of performance. As a check, a simple time domain simulation was run comparing the response of the
fesidual signal when the system is driven by the target fault (a step failure of the range sensor) to when it is driven by a nuisance fault
(a step failure of the longitudinal accelerometer on Car #1). Because we are using Riccati-based estimators, the blending matrices, G/,
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Singular Value Plot of Local Game Theoretic Filter #2
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Figure 3. Platoon Example - Signal Transmission in the Local Detection Filter on Car # 2 (accelerometer fault transmission shown with solid line, nuisance
fault transmission shown with dashed line)

are given by (15). The connecting matrices SJ are taken to be the pseudo-inverses of EJ. As Figure 5 shows, the rcsuliing decentralized

fault detection filter does a good job of distinguishing the target fault from the nuisance fault.

Remark 2 It must be noted that we have assumed that the lead car will transmit its measurements y!, its local state estimates %, and
the vector k' back to car #2 so that the latter can form the global estimate via the decentralized estimation algorithm. Transmission
issues and limitations, quite obviov<iy, open up the potential for new problems. We have also assumed that each car will have stored

on-board the needed Riccati solutions for all likely scenarios.

Conclusions
In this paper, we have introduced a decentralized fault detection filter which provides an alternative way to monitor large-scale -
systems for faults. The resulting filter has additional fault tolerance because it can check the health of its contituent sensors prior to

deriving the top level estimate and it is easily scalable for problems which are varying in size such as collections of systems.
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